Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur activation energy

One reason for the low reactivity of pyridine is that its nitrogen atom because it IS more electronegative than a CH in benzene causes the rr electrons to be held more tightly and raises the activation energy for attack by an electrophile Another is that the nitrogen of pyridine is protonated in sulfuric acid and the resulting pyndinium ion is even more deactivated than pyndine itself... [Pg.507]

The ESR spectrum of the pyridazine radical anion, generated by the action of sodium or potassium, has been reported, and oxidation of 6-hydroxypyridazin-3(2//)-one with cerium(IV) sulfate in sulfuric acid results in an intense ESR spectrum (79TL2821). The self-diffusion coefficient and activation energy, the half-wave potential (-2.16 eV) magnetic susceptibility and room temperature fluorescence in-solution (Amax = 23 800cm life time 2.6 X 10 s) are reported. [Pg.8]

Methane reacts with sulfur (an active nonmetal element of group 6A) at high temperatures to produce carbon disulfide. The reaction is endothermic, and an activation energy of approximately 160 KJ is required. Activated alumina or clay is used as the catalyst at approximately 675°C and 2 atmospheres. The process starts by vaporizing pure sulfur, mixing it with methane, and passing the mixture over the alumina catalyst. The reaction could be represented as ... [Pg.136]

By ab initio MO and density functional theoretical (DPT) calculations it has been shown that the branched isomers of the sulfanes are local minima on the particular potential energy hypersurface. In the case of disulfane the thiosulfoxide isomer H2S=S of Cg symmetry is by 138 kj mol less stable than the chain-like molecule of C2 symmetry at the QCISD(T)/6-31+G // MP2/6-31G level of theory at 0 K [49]. At the MP2/6-311G //MP2/6-3110 level the energy difference is 143 kJ mol" and the activation energy for the isomerization is 210 kJ mol at 0 K [50]. Somewhat smaller values (117/195 kJ mor ) have been calculated with the more elaborate CCSD(T)/ ANO-L method [50]. The high barrier of ca. 80 kJ mol" for the isomerization of the pyramidal H2S=S back to the screw-like disulfane structure means that the thiosulfoxide, once it has been formed, will not decompose in an unimolecular reaction at low temperature, e.g., in a matrix-isolation experiment. The transition state structure is characterized by a hydrogen atom bridging the two sulfur atoms. [Pg.111]

On the other hand, the large activation energy for the formation of sulfate from 8g and water makes it possible to prepare polysulfides as well as other reduced sulfur compounds as metastable products in aqueous solution at ambient conditions. [Pg.128]

Secondly, the activation energy for the reaction is unchanged by the addition of sulfur in agreement with studies on supported systems (26,27). This suggests that although the rate is slowed, the mechanism of the reaction is fundamentally unchanged. A similar conclusion was reached In studies of the role of potassium promoters on a Nl(lOO) catalyst (28), although the effect of sulfur and potassium on the individual steps of the reaction are likely quite different (1J, , 28). [Pg.193]

The promotor effect of SO2 increases with the amount added to the reaction medium (Fig.3). An effect of the addition of sulfur dioxide has also been observed on the oxidation of decane with an increase of the activation energy expected for such a poisoning. This addition leads to a noticeable decrease of the rate of oxidation at low temperature, where Cu sulfate is stable, but the effect becomes negligible at about 600 K. At this temperature, the conversion of decane estimated by the evolution of the peak e/m = 57, characteristic of the hydrocarbon, is close to 100% with CufTi02 catalysts in presence or not of SO2 (Figure 4). With Cu/Zr02 SO2 inhibits decane oxidation below 640 K. At 640 K a conversion of about 60% is observed in both the presence or absence of additive and an acceleration of oxidation is noticed at higher temperatures. [Pg.626]

Sulfur tetrafluoride appears as two broad singlets at room temperature, as one broad singlet at 85 °C, and (when dry) as two sharp triplets at -30 °C. SF6, with its symmetrical octahedral geometry, appears as a sharp singlet at all temperatures. The activation energy for pseudorotation of SF4, which interconverts its axial and equatorial fluorines, is 12kcalmor1.3... [Pg.228]

The kinetics of hydrocracking reactions has been studied with real feedstocks and apparent kinetic equations have been proposed. First-order kinetics with activation energy close to 50 kcal/gmol was derived for VGO. The reactions declines as metal removal > olefin saturation > sulfur removal > nitrogen removal > saturation of rings > cracking of naphthenes > cracking of paraffins [102],... [Pg.45]

Kinetics studies of the hydrotreatment (and hydrocracking) of VR has led to the conclusion that most of the metals, sulfur and nitrogen removal takes place during the first 50% of the whole VR conversion [119-123], More than one reactor was needed for HDM and HDS of a Maya VR, when HDT is used as feed pretreatment [119,120], Although vanadium removal appears easier and faster than nickel removal, their kinetics results showed very similar values of the activation energy for the demetallization reactions [122],... [Pg.50]

Impurities with catalytic effects—Impurities that act as catalysts, reducing the activation energy of a process, may increase the rate of reaction significantly, even when present in small quantities. The presence of sulfuric acid, for example, increases the rate of decomposition and decreases the observed onset temperature of various isomers of ni-trobenzoic acid [28]. Also, other substances such as NaCl, FeCl3, platinum, vanadium chloride, and molybdenum chloride show catalytic effects. As a result, the decomposition temperature can be lowered as much as 100°C. Catalysts, such as rust, may also be present inadvertently. Some decomposition reactions are autocatalyzed, which means that one of more of the decomposition products will accelerate the decomposition rate of the original substance. [Pg.47]

The initial rate of formation of H2S from hydrogen and sulfur was measured with the results tabulated. In all experiments the closed reaction vessel contained the same initial weights of sulfur and hydrogen. The rate is g H2S/(1iter) (s). Find the activation energy. [Pg.201]

Table 2. Activation energies for the reaction of protonated benzyl methyl ketoximes and their sulfur analogous systems calculated by MP2/6-31G. ... [Pg.383]


See other pages where Sulfur activation energy is mentioned: [Pg.284]    [Pg.210]    [Pg.457]    [Pg.540]    [Pg.459]    [Pg.238]    [Pg.297]    [Pg.74]    [Pg.164]    [Pg.254]    [Pg.267]    [Pg.10]    [Pg.401]    [Pg.1091]    [Pg.1098]    [Pg.1101]    [Pg.70]    [Pg.2]    [Pg.37]    [Pg.116]    [Pg.37]    [Pg.12]    [Pg.239]    [Pg.331]    [Pg.195]    [Pg.401]    [Pg.1091]    [Pg.1098]    [Pg.1101]    [Pg.363]    [Pg.111]    [Pg.294]    [Pg.298]    [Pg.67]    [Pg.130]    [Pg.61]   
See also in sourсe #XX -- [ Pg.582 ]




SEARCH



Active sulfur

© 2024 chempedia.info