Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution mechanisms stereochemistry

Crich D, Brebion F, Suk D-H (2006) Generation of Alkene Radical Cations by Heterolysis of -Substituted Radicals Mechanism, Stereochemistry, and Applications in Synthesis. 263-. 1-38... [Pg.258]

Alkyne hydrosilylation continues as a focus of current research. Despite the relative simplicity of the transformation, it is becoming increasingly clear that different catalysts often utilize unique mechanisms. In addition, the demands placed by the need to access vinylsilanes of differing substitution patterns, stereochemistries, and functional groups require a diverse, complementary set of methodologies. This discussion covers hydrosilylation reactions... [Pg.789]

It should be emphasized that the stereochemistry should be studied for both isomers, since work with one isomer only can result in wrong identification of the substitution mechanism. [Pg.40]

First, identify the leaving group, the electrophilic carbon, and the nucleophile. Then decide whether the reaction follows the SN1 or SN2 mechanism because this determines the stereochemistry. If the leaving group is bonded to a tertiary carbon, then the reaction must occur by the SN1 mechanism. (Later we will learn other factors that control which substitution mechanism a reaction follows.) For an SNI reaction, replace the leaving group on the electrophilic carbon with the nucleophile with loss of stereochemistry at the reaction center. [Pg.278]

The mechanism of the reaction is well-known. The first step is formation of a carbanion, followed by nucleophile addition to the carbonyl carbon atom halo-hydrin alcoholates are produced finally, ring-closure takes place by intramolecular substitution. The stereochemistry of the reaction is much disputed the reason why a unified viewpoint has not emerged is that the configuration of the end-product is influenced by the structure of the starting compound (including steric hindrance), the base employed, and solvation by the solvent, sometimes in an unclear manner. The stereochemical course of the reaction is controlled by the kinetic and thermodynamic factors in the second step the structure of the oxirane formed is decided by the reversibility of the aldolization and the reaction rate of the ring-closure. [Pg.47]

Palladium-catalysed allylic substitutions have been reviewed with respect to reactivity, mechanism, stereochemistry, and other topics. ... [Pg.342]

Nucleophilic substitution reactions are one of the most important classes of reactions in organic chemistry. In particular, 8 2 reactions are among the most extensively stndied chemical processes in solution and in the gas phase, both theoretically and experimentally. The history of the study of these reactions closely parallels (and is sometimes responsible for) the development of concepts such as structure-reactivity relationships, linear free-energy relationships, steric inhibition, kinetics as a probe of mechanism, stereochemistry as a probe of mechanism and solvent effects. [Pg.274]

Figure 3-22 shows a nucleophilic aliphatic substitution with cyanide ion as a nucleophile, i his reaction is assumed to proceed according to the S f2 mechanism with an inversion in the stereochemistry at the carbon atom of the reaction center. We have to assign a stereochemical mechanistic factor to this reaction, and, clearly, it is desirable to assign a mechanistic factor of (-i-1) to a reaction with retention of configuration and (-1) to a reaction with inversion of configuration. Thus, we want to calculate the parity of the product, of 3 reaction from the parity of the... [Pg.198]

While it may be convenient to use optically active reactants to probe the stereochemistry of substitution reactions, it should be emphasized that the stereochemistry of a reaction is a feature of the mechanism, not the means of determining it. Thus, it is proper to speak of a substitution process such as the hydrolysis of methyl iodide as proceeding... [Pg.97]

Another example of a reaction in which the stereochemistry of the process provides some valuable information about the mechanism is the thermal rearrangement of 1,5-dienes and substituted analogs ... [Pg.246]

The points that we have emphasized in this brief overview of the S l and 8 2 mechanisms are kinetics and stereochemistry. These features of a reaction provide important evidence for ascertaining whether a particular nucleophilic substitution follows an ionization or a direct displacement pathway. There are limitations to the generalization that reactions exhibiting first-order kinetics react by the Sj l mechanism and those exhibiting second-order kinetics react by the 8 2 mechanism. Many nucleophilic substitutions are carried out under conditions in which the nucleophile is present in large excess. When this is the case, the concentration of the nucleophile is essentially constant during die reaction and the observed kinetics become pseudo-first-order. This is true, for example, when the solvent is the nucleophile (solvolysis). In this case, the kinetics of the reaction provide no evidence as to whether the 8 1 or 8 2 mechanism operates. [Pg.269]

Studies of the stereochemical course of rmcleophilic substitution reactions are a powerful tool for investigation of the mechanisms of these reactions. Bimolecular direct displacement reactions by the limSj.j2 meohanism are expected to result in 100% inversion of configuration. The stereochemical outcome of the lirnSj l ionization mechanism is less predictable because it depends on whether reaction occurs via one of the ion-pair intermediates or through a completely dissociated ion. Borderline mechanisms may also show variable stereochemistry, depending upon the lifetime of the intermediates and the extent of internal return. It is important to dissect the overall stereochemical outcome into the various steps of such reactions. [Pg.302]

The stereochemistry of addition is usually anti for alkyl-substituted alkynes, whereas die addition to aryl-substituted compounds is not stereospecific. This suggests a termo-iecular mechanism in the alkyl case, as opposed to an aryl-stabilized vinyl cation mtermediate in the aryl case. Aryl-substituted alkynes can be shifted toward anti addition by including bromide salts in the reaction medium. Under these conditions, a species preceding the vinyl cation must be intercepted by bromide ion. This species can be presented as a complex of molecular bromine with the alkyne. An overall mechanistic summary is shown in the following scheme. [Pg.375]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]


See other pages where Substitution mechanisms stereochemistry is mentioned: [Pg.9]    [Pg.399]    [Pg.151]    [Pg.78]    [Pg.1307]    [Pg.35]    [Pg.17]    [Pg.17]    [Pg.281]    [Pg.17]    [Pg.169]    [Pg.88]    [Pg.140]    [Pg.178]    [Pg.772]    [Pg.71]   
See also in sourсe #XX -- [ Pg.989 ]




SEARCH



Mechanisms stereochemistry

Substitution stereochemistry

© 2024 chempedia.info