Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituent carbocyclic

As is broadly true for aromatic compounds, the a- or benzylic position of alkyl substituents exhibits special reactivity. This includes susceptibility to radical reactions, because of the. stabilization provided the radical intermediates. In indole derivatives, the reactivity of a-substituents towards nucleophilic substitution is greatly enhanced by participation of the indole nitrogen. This effect is strongest at C3, but is also present at C2 and to some extent in the carbocyclic ring. The effect is enhanced by N-deprotonation. [Pg.3]

A two-step synthesis of indoles from o-nitrobenzaldehydes proceeds by condensation with nitromcthanc followed by reductive cyclization. Like the Leim-gruber Batcho method, the principal application of the reaction is to indoles with only carbocyclic substituents. The forniation of the o,p-dinitrostyrenes is usually done under classical Henry condensation conditions but KF/18-crown-6 in propanol was found to be an advantageous reaction medium for acetoxy-substituted compounds[1]. The o,p-dinitrostyrenes can also be obtained by nitration of p-nitrostyrenes[2]. [Pg.11]

Rudisill and Stille developed a two-step procedure in which 2-bromo-or 2-trifluoromethanesulfonyloxyacetanilides were coupled with tri-n-butyl-stannylacetylenes in the presence of Pd(PPh3)4.[l], Cyclization was then effected with PdCl2(CH3CN)2. The conditions are compatible with a variety of carbocyclic substituents so the procedure can provide 2-substituted indoles with carbocyclic substituents. The reported yield ranges from 40% to 97% for the coupling and from 40% to 82% for cyclization. [Pg.21]

The procedure has been found to be compatible with a variety of carbocyclic substituents. Table 5.1 provides some examples of the reaction. [Pg.45]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

These two methods are closely related but differ in the point of initial attachment of the substituent from which the carbocyclic indole ring is constructed. One strategy for building up 2-substituted pyrroles capable of... [Pg.79]

Introduction of substituents on the carbocyclic ring relies primarily on electrophilic substitution and on organometallic reactions. The former reactions are not under strong regiochcmical control. The nitrogen atom can stabilize any of the C-nng o-complexes and both pyrrole and benzo ring substituents can influence the substitution pattern, so that the position of substitution tends to be dependent on the specific substitution pattern (Scheme 14.1). [Pg.135]

The presence of activating substituent on the carbocyclic ring can, of course, affect the position of substitution. For example, Entries 4 and 5 in Table 14.1 reflect such orientational effects. Entry 6 involves using the ipso-directing effect of a trimethylsilyl substituent to achieve 4-acetylation. [Pg.136]

Carbocyclic substitution can also be achieved by first introdueing a reactive organomelallic substituent. Preparation of organolithium reagents can be done by one of the conventional melhods. especially halogen-metal exchange or directed lithiation. Table 14.2 gives examples. [Pg.139]

Indoles with carbocyclic halogen or triflate substituents are potential starting materials for vinylation, arylation and acylation via palladium-catalysed pro-cesses[l]. Indolylstannanes. indolylzinc halides and indolylboronic acids are also potential reactants. The principal type of substitution which is excluded from such coupling reactions is alkylation, since saturated alkyl groups tend to give elimination products in Pd-catalysed processes. [Pg.141]

There is a difference of opinion about the net effect of resonance between the leaving group and an electron-attracting heterocycle, carbocycle, or substituent- This conjugation (101, 102) has been regarded as a deactivating influence on nucleophilic substitution since the C— Le bond is lower in polarity and higher in... [Pg.198]

Alkoxyisoindoles bearing substituents at the carbocyclic ring exist exclusively in the benzenoid structure the o-quinoid form could not be detected spectroscopically (88CB243). 3-(Methylthio)isoindoles are far more reactive than the corresponding alkoxy-isoindoles. These compounds prefer the benzenoid strueture, too (88CB243). [Pg.91]

Pyrroles are hydrogenated with more difficulty than are carbocyclic aromatics. In compounds containing both rings, hydrogenation will proceed nonselectively or with preference for the carbocyclic ring (/9), unless reduction of the carbocyclic ring is impeded by substituents. Acidic solvents are frequently used but are not necessary. [Pg.134]

Generally, oxepins have a tendency to contract to a six-membered carbocycle when treated with acid. The driving force is the aromaticity of the phenol formed. However, when the less stable cyclohexa-2,5-diene-1,4-diol with an appropriate substitution pattern is treated with acid, the oxepin system is obtained. The treatment of cyclohexadienediols that are substituted with tert-butyl groups in the 2- and 6-positions and aryl at Cl and C4 with trifluoroacetic acid produces oxepins 1 with elimination of water.186 187 This reaction, however, is restricted to certain aryl substituents with at least some electron-donating effect. Generally, cyclohexa-2,4-dienone derivatives 2 are formed.187,188... [Pg.31]

Q Carbocyclic Aromatic Compounds without Halogen Substituents... [Pg.385]


See other pages where Substituent carbocyclic is mentioned: [Pg.3]    [Pg.8]    [Pg.8]    [Pg.135]    [Pg.136]    [Pg.136]    [Pg.138]    [Pg.179]    [Pg.20]    [Pg.286]    [Pg.286]    [Pg.24]    [Pg.537]    [Pg.215]    [Pg.215]    [Pg.274]    [Pg.265]    [Pg.78]    [Pg.43]    [Pg.102]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Carbocyclizations substituents

Introduction of substituents on the carbocyclic ring

© 2024 chempedia.info