Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structures, crystal systems

Structure Crystal system Space group Lattice description Lattice parameters ... [Pg.1053]

Crystal Structure Crystal system Chain conformation Unit cell parameters ... [Pg.69]

Batch versus continuous Flowsheet input-output structure Crystallizer and recycle considerations Separation systems specification Product drying Energy systems... [Pg.271]

It should be noted that the fraction of ECC in samples obtained by other methods described in Sect. 2 is approximately as small as that of the framework in the orientation-ally crystallized samples. These methods differ in details but depend on the mechanical treatment of the crystallizing system and are therefore given the common name stress-induced crystallization . Although the structure of the samples obtained by these methods has some features in common with that of orientationally crystallized samples, the thermodynamics and kinetics of orientational crystallization are fundamentally different from the mechanism of stress-induced crystallization. [Pg.243]

A unit cell for the calcite structure can be found, on the Web site for this book. From this structure, determine (a) the crystal system and (b) the number of formula units present in the unit cell. [Pg.742]

Computer simulations therefore have several inter-related objectives. In the long term one would hope that molecular level simulations of structure and bonding in liquid crystal systems would become sufficiently predictive so as to remove the need for costly and time-consuming synthesis of many compounds in order to optimise certain properties. In this way, predictive simulations would become a routine tool in the design of new materials. Predictive, in this sense, refers to calculations without reference to experimental results. Such calculations are said to be from first principles or ab initio. As a step toward this goal, simulations of properties at the molecular level can be used to parametrise interaction potentials for use in the study of phase behaviour and condensed phase properties such as elastic constants, viscosities, molecular diffusion and reorientational motion with maximum specificity to real systems. Another role of ab initio computer simulation lies in its interaction... [Pg.4]

This article reviews progress in the field of atomistic simulation of liquid crystal systems. The first part of the article provides an introduction to molecular force fields and the main simulation methods commonly used for liquid crystal systems molecular mechanics, Monte Carlo and molecular dynamics. The usefulness of these three techniques is highlighted and some of the problems associated with the use of these methods for modelling liquid crystals are discussed. The main section of the article reviews some of the recent science that has arisen out of the use of these modelling techniques. The importance of the nematic mean field and its influence on molecular structure is discussed. The preferred ordering of liquid crystal molecules at surfaces is examined, along with the results from simulation studies of bilayers and bulk liquid crystal phases. The article also discusses some of the limitations of current work and points to likely developments over the next few years. [Pg.41]

It appears that Cluster C catalyzes the chemistry of CO oxidation and transfers electrons to Cluster B, which donates electrons to external acceptors such as ferredoxin. Since a crystal structure of this protein does not exist, the proposed structure of Cluster C is based on spectroscopic measurements. In some cases, the EPR spectrum of a metal center is diagnostic of the type of center. However, the EPR spectra of Cluster C are unusual. The paramagnetic states of Cluster C (Credi and Cred2) have g-values that are atypical of standard [4Fe-4S] clusters (Table III) and are similar to those in a variety of structurally unrelated systems including a t-oxo bridged ion dimer), a [Fe4S4] ... [Pg.316]

Vaterite is thermodynamically most unstable in the three crystal structures. Vaterite, however, is expected to be used in various purposes, because it has some features such as high specific surface area, high solubility, high dispersion, and small specific gravity compared with the other two crystal systems. Spherical vaterite crystals have already been reported in the presence of divalent cations [33], a surfactant [bis(2-ethylhexyl)sodium sulfate (AOT)] [32], poly(styrene-sulfonate) [34], poly(vinylalcohol) [13], and double-hydrophilic block copolymers [31]. The control of the particle size of spherical vaterite should be important for application as pigments, fillers and dentifrice. [Pg.149]

Of special interest to intercalation studies are complex non-stoichiometric systems, such as the so-called misfit layer chalcogenides that were first synthesized in the 1960s [45]. Typically, the misfit compounds present an asymmetry along the c-axis, evidencing an inclination of the unit cell in this direction, due to lattice mismatch in, say, the -axis therefore these solids prefer to fold and/or adopt a hollow-fiber structure, crystallizing in either platelet form or as hollow whiskers. One of the first studied examples of such a misfit compound has been the kaolinite mineral. [Pg.24]

At this point, you may find that the subject of symmetry in a crysted structure to be confusing. However, by studying the terminology carefully in Table 2-2, one can begin to sort out the various lattice structures and the symbols used to delineate them. All of the crystal systems can be described by use of either Schoenflies or Hermaim-Mauguin S5mbols, coupled with the use of the proper geometrical symbols. [Pg.53]

The structure factor itself is expressed as the sum of energy diffracted, over one unit-cell, of the individual scattering factors, fi, for atoms located at X, y and z. Having done this, we can then identify the exact locations of the atoms (ions) within the unit-cell, its point-group sjmimetiy, and crystal system. This then completes our picture of the structure of the material. [Pg.57]

The ruthenium-copper and osmium-copper systems represent extreme cases in view of the very limited miscibility of either ruthenium or osmium with copper. It may also be noted that the crystal structure of ruthenium or osmium is different from that of copper, the former metals possessing the hep structure and the latter the fee structure. A system which is less extreme in these respects is the rhodium-copper system, since the components both possess the face centered cubic structure and also exhibit at least some miscibility at conditions of interest in catalysis. Recent EXAFS results from our group on rhodium-copper clusters (14) are similar to the earlier results on ruthenium-copper ( ) and osmium-copper (12) clusters, in that the rhodium atoms are coordinated predominantly to other rhodium atoms while the copper atoms are coordinated extensively to both copper and rhodium atoms. Also, we conclude that the copper concentrates in the surface of rhodium-copper clusters, as in the case of the ruthenium-copper and osmium-copper clusters. [Pg.261]

Space lattices and crystal systems provide only a partial description of the crystal structure of a crystalline material. If the structure is to be fully specified, it is also necessary to take into account the symmetry elements and ultimately determine the pertinent space group. There are in all two hundred and thirty space groups. When the space group as well as the interatomic distances are known, the crystal structure is completely determined. [Pg.8]

The term crystal structure in essence covers all of the descriptive information, such as the crystal system, the space lattice, the symmetry class, the space group and the lattice parameters pertaining to the crystal under reference. Most metals are found to have relatively simple crystal structures body centered cubic (bcc), face centered cubic (fee) and hexagonal close packed (eph) structures. The majority of the metals exhibit one of these three crystal structures at room temperature. However, some metals do exhibit more complex crystal structures. [Pg.10]

S1 CRYSTAL STRUCTURES S1.1 Crystal Systems and Unit Cells... [Pg.447]

Orthopedic devices, 3 721-735 joint replacement, 3 727-735 Orthopedic marrow needles, 3 743-744 Orthophosphate (PO4), in soil, 11 112 Orthophosphates, 18 830-841 20 637 magnesium, 18 839 manufacture of, 18 853-855 Orthophosphate salts, 18 836 Orthophosphoric acid, 18 815, 817-826 condensation of, 18 826 properties of, 18 817-819 solubility of boron halides in, 4 140t orf/zo-phthalic resins, 20 101, 113 formulation of, 20 102 Orthorhombic crystal system, 8 114t Orthorhombic phosphorus pentoxide, 19 49 Orthorhombic structure, of ferroelectric crystals, 11 95, 96 Orthorhombic symmetry, 8 114t Orthosilicate monomers, in silicate glasses, 22 453... [Pg.658]

Structural steels, tellurium in, 24 425 Structure(s), see also Chain structure Chemical structures Cocontinuous structures Controlled structure Crystal structure Molecular structure Morphology Phase structure of carbon fibers, 26 737-739 detersive systems for, 8 413t HDPE, 20 157-162 LLDPE, 20 182-184, 203-205 polyesterether elastomer, 20 72-73 polyester fiber, 20 21 polyether antibiotics, 20 137-139 polyimide, 20 276-278 polymer, 20 395-405 protein, 20 449 PTT, 20 68t... [Pg.892]

Tetragonal crystal system, 8 114t Tetragonal lattice structure, of silicon, 22 482... [Pg.933]


See other pages where Structures, crystal systems is mentioned: [Pg.97]    [Pg.97]    [Pg.47]    [Pg.118]    [Pg.281]    [Pg.98]    [Pg.405]    [Pg.32]    [Pg.110]    [Pg.159]    [Pg.68]    [Pg.78]    [Pg.167]    [Pg.256]    [Pg.21]    [Pg.71]    [Pg.421]    [Pg.766]    [Pg.39]    [Pg.447]    [Pg.13]    [Pg.14]    [Pg.55]    [Pg.399]    [Pg.301]    [Pg.168]    [Pg.525]    [Pg.89]   
See also in sourсe #XX -- [ Pg.1015 ]




SEARCH



Crystal systems

Crystallizing system

© 2024 chempedia.info