Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure/nanostructure change

As has been shown above, oscillatory electrodeposition is interesting from the point of view of the production of micro- and nanostructured materials. However, in situ observation of the dynamic change of the deposits had been limited to the micrometer scale by use of an optical microscope. Inspections on the nanometer scale were achieved only by ex situ experiments. Thus, information vdth regard to dynamic nanostructural changes of deposits in the course of the oscillatory growth was insufHcient, although it is very important to understand how the macroscopic ordered structures are formed with their molecular- or nano-components in a self-organized manner. [Pg.252]

In most cases the different constituent blocks are incompatible, giving rise to intramolecular phase separation, but the chemical connectivity restricts the special dimension of phase segregation to the nanoscale. As a result, at sufficiently high molecular weight, monodisperse block copolymers form a rich variety of self-assembled structures or an array of periodic nanostructures with a periodicity of 10-100 nm, commonly referred to as microphase-separated structures. By changing the relative composition, the compatibility between the component polymers, and the architecture of the copolymer molecules, the size and type of nanostructures can be precisely controlled [1-6]. [Pg.223]

As aforementioned, diblock copolymer films have a wide variety of nanosized microphase separation structures such as spheres, cylinders, and lamellae. As described in the above subsection, photofunctional chromophores were able to be doped site-selectively into the nanoscale microdomain structures of the diblock copolymer films, resulting in nanoscale surface morphological change of the doped films. The further modification of the nanostructures is useful for obtaining new functional materials. Hence, in order to create further surface morphological change of the nanoscale microdomain structures, dopant-induced laser ablation is applied to the site-selectively doped diblock polymer films. [Pg.213]

Perfection of Structure in Nanostructured Materials. An aim of modern nanotechnology is the fabrication of materials with highly perfect structure on the nanometer scale. The distortion of such nanostructured materials can be studied by SAXS methods. Frequently the material is supplied as a very thin film with predominantly uniaxial correlation among the nanodomains. Under these constraints the nanodomains are frequently arranged in such a way that the normal to the film is a symmetry axis rotation of the film on the sample table does not change the scattering (fiber symmetry). [Pg.200]

Ruland and Smarsly [84] study silica/organic nanocomposite films and elucidate their lamellar nanostructure. Figure 8.47 demonstrates the model fit and the components of the model. The parameters hi and az (inside H ) account for deviations from the ideal two-phase system. Asr is the absorption factor for the experiment carried out in SRSAXS geometry. In the raw data an upturn at. s o is clearly visible. This is no structural feature. Instead, the absorption factor is changing from full to partial illumination of the sample. For materials with much stronger lattice distortions one would mainly observe the Porod law, instead - and observe a sharp bend - which are no structural feature, either. [Pg.202]

There has been tremendous interest in the study of atomic nanostructures over the last few years. At the atomic scale nanomanipulation is increasingly opening up a new world of nanosize clusters and structures, many of which have properties distinct both from those of the macroscopic solid materials and also from those of small molecules. The nanoscale is often the critical size at which properties start to change... [Pg.367]

Defects in carbon nanostructures can be classified into (a) structural defects, (b) topological defects, (c) high curvature and (d) non-sp2 carbon defects. Even slight changes within the carbon nanostructure can modify the chemical and physical properties. Some defects in carbon systems results in high chemical reactivity, mainly due to the accumulation of electrons in the vicinity of the dopant. These defects can be used as anchoring sites in order to make the carbon nanostructures more compatible with ceramic or polymer matrices, thus enhancing interactions between carbon structures (filler) and the host matrices. [Pg.76]


See other pages where Structure/nanostructure change is mentioned: [Pg.151]    [Pg.284]    [Pg.252]    [Pg.506]    [Pg.142]    [Pg.160]    [Pg.1510]    [Pg.2502]    [Pg.791]    [Pg.224]    [Pg.300]    [Pg.403]    [Pg.106]    [Pg.378]    [Pg.25]    [Pg.204]    [Pg.229]    [Pg.135]    [Pg.48]    [Pg.203]    [Pg.453]    [Pg.454]    [Pg.469]    [Pg.241]    [Pg.240]    [Pg.256]    [Pg.466]    [Pg.533]    [Pg.203]    [Pg.124]    [Pg.218]    [Pg.147]    [Pg.393]    [Pg.426]    [Pg.324]    [Pg.382]    [Pg.165]    [Pg.74]    [Pg.668]    [Pg.149]    [Pg.303]    [Pg.165]    [Pg.25]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Structural change

Structure change

Structure nanostructures

© 2024 chempedia.info