Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure determination dynamic processes

To carry out a spectroscopy, that is the structural and dynamical determination, of elementary processes in real time at a molecular level necessitates the application of laser pulses with durations of tens, or at most hundreds, of femtoseconds to resolve in time the molecular motions. Sub-100 fs laser pulses were realised for the first time from a colliding-pulse mode-locked dye laser in the early 1980s at AT T Bell Laboratories by Shank and coworkers by 1987 these researchers had succeeded in producing record-breaking pulses as short as 6fs by optical pulse compression of the output of mode-locked dye laser. In the decade since 1987 there has only been a slight improvement in the minimum possible pulse width, but there have been truly major developments in the ease of generating and characterising ultrashort laser pulses. [Pg.4]

Multidimensional and heteronuclear NMR techniques have revolutionised the use of NMR spectroscopy for the structure determination of organic molecules from small to complex. Multidimensional NMR also allows observation of forbidden multiple-quantum transitions and probing of slow dynamic processes, such as chemical exchange, cross-relaxation, transient Over-hauser effects, and spin-diffusion in solids. [Pg.338]

The most important experimental task in structural chemistry is the structure determination. It is mainly performed by X-ray diffraction from single crystals further methods include X-ray diffraction from crystalline powders and neutron diffraction from single crystals and powders. Structure determination is the analytical aspect of structural chemistry the usual result is a static model. The elucidation of the spatial rearrangements of atoms during a chemical reaction is much less accessible experimentally. Reaction mechanisms deal with this aspect of structural chemistry in the chemistry of molecules. Topotaxy is concerned with chemical processes in solids, in which structural relations exist between the orientation of educts and products. Neither dynamic aspects of this kind are subjects of this book, nor the experimental methods for the preparation of solids, to grow crystals or to determine structures. [Pg.1]

Viscoelastic and transport properties of polymers in the liquid (solution, melt) or liquid-like (rubber) state determine their processing and application to a large extent and are of basic physical interest [1-3]. An understanding of these dynamic properties at a molecular level, therefore, is of great importance. However, this understanding is complicated by the facts that different motional processes may occur on different length scales and that the dynamics are governed by universal chain properties as well as by the special chemical structure of the monomer units [4, 5],... [Pg.3]

OL behavior is assessed simply by monitoring the transmission of a (usually solution) sample as a function of the incoming laser fluence measured in joules per square centimeter (rather than intensity in watts per square centimeter).22,23 Limiting thresholds Fth, defined as the incident fluence at which the actual transmittance falls to 50% of the corresponding linear transmittance, are then commonly quoted. Since excited-state absorption processes generally determine the OL properties of molecules, the excited-state structure and dynamics are often studied in detail. The laser pulse width is an important consideration in the study of OL effects. Compounds (1-5)58-62 are representative non-metal-containing compounds with especially large NLO and/or OL... [Pg.625]

Such ambiguity and also the low structural resolution of the method require that the spectroscopic properties of protein fluorophores and their reactions in electronic excited states be thoroughly studied and characterized in simple model systems. Furthermore, the reliability of the results should increase with the inclusion of this additional information into the analysis and with the comparison of the complementary data. Recently, there has been a tendency not only to study certain fluorescence parameters and to establish their correlation with protein dynamics but also to analyze them jointly, to treat the spectroscopic data multiparametrically, and to construct self-consistent models of the dynamic process which take into account these data as a whole. Fluorescence spectroscopy gives a researcher ample opportunities to combine different parameters determined experimentally and to study their interrelationships (Figure 2.1). This opportunity should be exploited to the fullest. [Pg.66]

In the majority of cases, fluorescent labels and probes, when studied in different liquid solvents, display single-exponential fluorescence decay kinetics. However, when they are bound to proteins, their emission exhibits more complicated, nonexponential character. Thus, two decay components were observed for the complex of 8-anilinonaphthalene-l-sulfonate (1,8-ANS) with phosphorylase(49) as well as for 5-diethylamino-l-naphthalenesulfonic acid (DNS)-labeled dehydrogenases.(50) Three decay components were determined for complexes of 1,8-ANS with low-density lipoproteins.1 51 1 On the basis of only the data on the kinetics of the fluorescence decay, the origin of these multiple decay components (whether they are associated with structural heterogeneity in the ground state or arise due to dynamic processes in the excited state) is difficult to ascertain. [Pg.77]

From this comparison it follows that the observation of the structural relaxation by standard relaxation techniques in general might be hampered by contributions of other dynamic processes. It is also noteworthy that the structural relaxation time at a given temperature is slower than the characteristic time determined for the a-relaxation by spectroscopic techniques [105]. An isolation of the structural relaxation and its direct microscopic study is only possible through investigation of the dynamic structure factor at the interchain peak - and NSE is essential for this purpose. [Pg.81]

Five-membered heterocycles (C). That structural motif was determined in few cases only (34 and 35). It has one endo- and one exocyclic N—N bond, and only one of the negatively charged nitrogen atoms is in a bridging position. The rings adopt a twist conformation. The structure seems to be preserved in solution, and no dynamic processes were determined by NMR spectroscopy. [Pg.61]

Nuclear magnetic resonance (NMR) spectroscopy is a most effective and significant method for observing the structure and dynamics of polymer chains both in solution and in the solid state [1]. Undoubtedly the widest application of NMR spectroscopy is in the field of structure determination. The identification of certain atoms or groups in a molecule as well as their position relative to each other can be obtained by one-, two-, and three-dimensional NMR. Of importance to polymerization of vinyl monomers is the orientation of each vinyl monomer unit to the growing chain tacticity. The time scale involved in NMR measurements makes it possible to study certain rate processes, including chemical reaction rates. Other applications are isomerism, internal relaxation, conformational analysis, and tautomerism. [Pg.83]

The accuracy achieved through ab initio quantum mechanics and the capabilities of simulations to analyze structural elements and dynamical processes in every detail and separately from each other have not only made the simulations a valuable and sometimes indispensable basis for the interpretation of experimental studies of systems in solution, but also opened the access to hitherto unavailable data for solution processes, in particular those occurring on the picosecond and subpicosecond timescale. The possibility to visualize such ultrafast reaction dynamics appears another great advantage of simulations, as such visualizations let us keep in mind that chemistry is mostly determined by systems in continuous motion rather than by the static pictures we are used to from figures and textbooks. It can be stated, therefore, that modern simulation techniques have made computational chemistry not only a universal instrument of investigation, but in some aspects also a frontrunner in research. At least for solution chemistry this seems to be recognizable from the few examples presented here, as many of the data would not have been accessible with contemporary experimental methods. [Pg.172]


See other pages where Structure determination dynamic processes is mentioned: [Pg.308]    [Pg.343]    [Pg.391]    [Pg.27]    [Pg.122]    [Pg.323]    [Pg.330]    [Pg.190]    [Pg.142]    [Pg.127]    [Pg.90]    [Pg.190]    [Pg.87]    [Pg.61]    [Pg.183]    [Pg.134]    [Pg.10]    [Pg.50]    [Pg.227]    [Pg.67]    [Pg.199]    [Pg.90]    [Pg.301]    [Pg.441]    [Pg.518]    [Pg.164]    [Pg.117]    [Pg.674]    [Pg.197]    [Pg.83]    [Pg.756]    [Pg.30]    [Pg.204]    [Pg.894]    [Pg.849]    [Pg.497]    [Pg.237]    [Pg.246]    [Pg.35]   
See also in sourсe #XX -- [ Pg.473 , Pg.474 ]




SEARCH



Dynamical process

Process structure

Structural dynamics

Structure dynamics

© 2024 chempedia.info