Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural relaxation model

Based on this understanding, a mechanism based constitutive model incorporating the nonlinear structural relaxation model into the continuum finite-deformation thermoviscoelastic framework was developed as follows. The aim of this effort was to estabUsh a quantitative understanding of the shape memory behavior of the thermally responsive thermoset SMP programmed at temperamres below Tg. To simplify the formulation, several basic assumptions were made in this study ... [Pg.124]

Let us consider a simple model of a quenched-annealed system which consists of particles belonging to two species species 0 is quenched (matrix) and species 1 is annealed, i.e., the particles are allowed to equlibrate between themselves in the presence of 0 particles. We assume that the subsystem composed of 0 particles has been a usual fluid before quenching. One can characterize it either by the density or by the value of the chemical potential The interparticle interaction Woo(r) does not need to be specified for the moment. It is just assumed that the fluid with interaction woo(r) has reached an equlibrium at certain temperature Tq, and then the fluid has been quenched at this temperature without structural relaxation. Thus, the distribution of species 0 is any one from a set of equihbrium configurations corresponding to canonical or grand canonical ensemble. We denote the interactions between annealed particles by Un r), and the cross fluid-matrix interactions by Wio(r). [Pg.297]

Figure 2-7. Origins of the increased O2 binding energy in IPNS when the protein is included in an ONIOM model. (A) A comparison of the optimized geometries from an active-site model (silver) and an ONIOM protein model (dark grey), show that the artificial structural relaxation of the active-site model is more pronounced for the reactant state than for the product state. (B) Contributions to O2 binding from the surrounding protein, evaluated only at the MM level (Adapted from Lundberg and Morokuma [26], Reprinted with permission. Copyright 2007 American Chemical Society.)... Figure 2-7. Origins of the increased O2 binding energy in IPNS when the protein is included in an ONIOM model. (A) A comparison of the optimized geometries from an active-site model (silver) and an ONIOM protein model (dark grey), show that the artificial structural relaxation of the active-site model is more pronounced for the reactant state than for the product state. (B) Contributions to O2 binding from the surrounding protein, evaluated only at the MM level (Adapted from Lundberg and Morokuma [26], Reprinted with permission. Copyright 2007 American Chemical Society.)...
The combined QM/MM model can be used along with Statistical Perturbation Theory to carry out a Monte Carlo simulation of a chemical reaction in solution, with the advantage of allowing solute electronic structure relaxation in solution. Particularly, the combined AM1/TIP3P force field has recently been applied to simulate several chemical processes in solution. We will refer here briefly to the Claisen rearrangement and to the Menshutkin reaction. [Pg.169]

We can therefore conclude that differences in the structural relaxation between bead-spring and chemically realistic models can be attributed to either the differences in packing that we discussed above or the presence of barriers in the dihedral potential in atomistic models. To quantify the role of dihedral barriers in polymer melt dynamics, we now examine high-temperature relaxation in polymer melts. [Pg.41]

In the discussion on the dynamics in the bead-spring model, we have observed that the position of the amorphous halo marks the relevant local length scale in the melt structure, and it is also central to the MCT treatment of the dynamics. The structural relaxation time in the super-cooled melt is best defined as the time it takes density correlations of this wave number (i.e., the coherent intermediate scattering function) to decay. In simulations one typically uses the time it takes S(q, t) to decay to a value of 0.3 (or 0.1 for larger (/-values). The temperature dependence of this relaxation time scale, which is shown in Figure 20, provides us with a first assessment of the glass transition... [Pg.47]

Fig. 4.20 Temperature dependence of the average relaxation times of PIB results from rheological measurements [34] dashed-dotted line), the structural relaxation as measured by NSE at Qmax (empty circle [125] and empty square), the collective time at 0.4 A empty triangle), the time corresponding to the self-motion at Q ax empty diamond),NMR dotted line [136]), and the application of the Allegra and Ganazzoli model to the single chain dynamic structure factor in the bulk (filled triangle) and in solution (filled diamond) [186]. Solid lines show Arrhenius fitting curves. Dashed line is the extrapolation of the Arrhenius-like dependence of the -relaxation as observed by dielectric spectroscopy [125]. (Reprinted with permission from [187]. Copyright 2003 Elsevier)... Fig. 4.20 Temperature dependence of the average relaxation times of PIB results from rheological measurements [34] dashed-dotted line), the structural relaxation as measured by NSE at Qmax (empty circle [125] and empty square), the collective time at 0.4 A empty triangle), the time corresponding to the self-motion at Q ax empty diamond),NMR dotted line [136]), and the application of the Allegra and Ganazzoli model to the single chain dynamic structure factor in the bulk (filled triangle) and in solution (filled diamond) [186]. Solid lines show Arrhenius fitting curves. Dashed line is the extrapolation of the Arrhenius-like dependence of the -relaxation as observed by dielectric spectroscopy [125]. (Reprinted with permission from [187]. Copyright 2003 Elsevier)...
B. Relation of Entropy Theory to Elastic Modulus Model of Structural Relaxation... [Pg.126]

The AG model [48] for the dynamics of glass-forming liquids essentially postulates that the drop in S upon lowering temperature is accompanied by collective motion and that the fluid s structural relaxation times r are activated with a barrier height that is proportional [80] to the number z of polymer... [Pg.139]

As discussed in Section II, the Adam-Gibbs [48] model of relaxation in cooled liquids relates the structural relaxation times x, associated with long wavelength relaxation processes (viscosity, translational diffusion, rates of diffusion-limited... [Pg.152]

A further development is possible by noting that the high frequency shear modulus Goo is related to the mean square particle displacement (m ) of caged fluid particles (monomers) that are transiently localized on time scales ranging between an average molecular collision time and the structural relaxation time r. Specifically, if the viscoelasticity of a supercooled liquid is approximated below Ti by a simple Maxwell model in conjunction with a Langevin model for Brownian motion, then (m ) is given by [188]... [Pg.195]

If in addition to a thermodynamic driving force, a system has kinetic mechanisms available to produce a phase transformation (e.g., diffusion or atomic structural relaxation), the rate and characteristics of phase transformations can be modeled through combinations of their cause (thermodynamic driving forces) and their kinetic mechanisms. Analysis begins with identification of parameters (i.e., order parameters) that characterize the internal variations in state that accompany the transformation. For example, site fraction and magnetization can serve as order parameters for a ferromagnetic crystalline phase. [Pg.420]


See other pages where Structural relaxation model is mentioned: [Pg.531]    [Pg.361]    [Pg.531]    [Pg.361]    [Pg.38]    [Pg.160]    [Pg.34]    [Pg.50]    [Pg.56]    [Pg.241]    [Pg.89]    [Pg.116]    [Pg.167]    [Pg.234]    [Pg.167]    [Pg.611]    [Pg.99]    [Pg.135]    [Pg.136]    [Pg.137]    [Pg.158]    [Pg.160]    [Pg.163]    [Pg.186]    [Pg.194]    [Pg.207]    [Pg.208]    [Pg.208]    [Pg.209]    [Pg.59]    [Pg.494]    [Pg.716]    [Pg.340]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Relaxation model

Structural relaxation

© 2024 chempedia.info