Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural quinoids intermediates

After the above discussion of several electrophilic aromatic substitutions which show primary kinetic isotope effects, it might be appropriate to summarize the structural characteristics which cause the occurrence of a rate-limiting proton release and, therefore, an isotope effect. There is one well established structural phenomenon known today, namely steric requirements of the intermediate, and another which is tentatively proposed here, namely formation of a stable quinoid intermediate, the... [Pg.179]

Conversion of Aromatic Rings to Nonaromatic Cyclic Structures. On treatment with oxidants such as chlorine, hypochlorite anion, chlorine dioxide, oxygen, hydrogen peroxide, and peroxy acids, the aromatic nuclei in lignin typically ate converted to o- and -quinoid stmctures and oxinane derivatives of quinols. Because of thein relatively high reactivity, these stmctures often appear as transient intermediates rather than as end products. Further reactions of the intermediates lead to the formation of catechol, hydroquinone, and mono- and dicarboxyhc acids. [Pg.139]

Quinone methides are the key intermediates in both resole resin syntheses and crosslinking reactions. They form by the dehydration of hydroxymethylphenols or dimethylether linkages (Fig. 7.24). Resonance forms for quinone methides include both quinoid and benzoid structures (Fig. 7.25). The oligomerization or crosslinking reaction proceeds by nucleophilic attack on the quinone methide carbon. [Pg.400]

When the ortho-para directing group is one with an unshared pair (this of course applies to most of them), there is another effect that increases the amount of para product at the expense of the ortho. A comparison of the intermediates involved (p. 683) shows that C is a canonical form with an ortho-quinoid structure, while D has a para-quinoid structure. Since we know that para-quinones are more stable than the ortho isomers, it seems reasonable to assume that D is more stable than C, and therefore contributes more to the hybrid and increases its stability compared to the ortho intermediate. [Pg.686]

Oxo-a-tocopherol (55) proved to be a very interesting compound with regard to forming various intermediate tautomeric and quinoid structures. It undergoes an intriguing rearrangement of its skeleton under involvement of different o-QM structures. The 4-oxo-compound was prepared from 3,4-dehydro-a-tocopheryl acetate via its bromohydrin, which was treated with ZnO to afford 4-oxo-a-tocopherol (55). [Pg.201]

An interesting way to generate telluronium dications involves electron transfer through a 71-conjugated system to a spatially remote sulfoxide sulfur atom in a domino manner. Treatment of substrate 141 with triflic anhydride results in reduction of the terminal sulfoxide group with simultaneous oxidation of the tellurium atom in the para-position and formation of a trichalcogen dicationic moiety 144143 through the intermediate sulfonium salt 142 and quinoid structure 143 (Scheme 52). [Pg.440]

Fig. 7-30. Examples of proposed leucochromophoric and chromophoric structures. Aryl-coumarones (1) and stilbene quinones (2) are thought to be formed from stilbenes after oxidation. Butadiene quinones (3) could arise from oxidation of hydroxyarylbutadienes being formed from phenolic pinoresinol structures during kraft or neutral sulfite pulping. Cyclization may yield intermediates which are further oxidized to cyclic diones (4). A resonance-stabilized structure (5) results from the corresponding condensation product formed during pulping. o-Quinoid structures (7) are oxidation products of catechols (6) formed during alkaline or neutral pulping processes. Fig. 7-30. Examples of proposed leucochromophoric and chromophoric structures. Aryl-coumarones (1) and stilbene quinones (2) are thought to be formed from stilbenes after oxidation. Butadiene quinones (3) could arise from oxidation of hydroxyarylbutadienes being formed from phenolic pinoresinol structures during kraft or neutral sulfite pulping. Cyclization may yield intermediates which are further oxidized to cyclic diones (4). A resonance-stabilized structure (5) results from the corresponding condensation product formed during pulping. o-Quinoid structures (7) are oxidation products of catechols (6) formed during alkaline or neutral pulping processes.
The electrophiles or electrophilic intermediates that are or are postulated to be responsible for the carcinogenic action of chemicals include (i) positively charged carbonium, nitrenium, oxonium and episulfonium ions, (ii) free radicals, (iii) polarized double bonds, (iv) aldehydes, (v) strained rings such as epoxide, aziridine, lactones and sultones, and (vi) quinone/ quinoid/quinoneimine structures. Based on their reactivity (Table I), electrophiles may be graded from "soft" to "hard" similar to the concept of "soft" and "hard" acids and bases (18). In general, soft electrophiles react preferentially with soft nucleophiles whereas hard electrophiles react preferentially with hard nucleophiles. Thus, since the nucleophilic sites in the purine and pyrimidine bases in DNA are moderately hard nucleophiles, moderately hard electrophiles tend to have the greatest likelihood of covalent binding to DNA. Soft electrophiles often deplete the cellular pool of noncritical soft nucleophiles (such as GSH) before they can react with DNA. [Pg.181]

All known reactions of PLP-containing enzymes can be described mechanistically in the same way-formation of a planar Schiff base or aldimine intermediate, followed by formation of a resonance-stabilized carbanion with a quinoid structure, as shown in Figure 20,15. Depending on the bond labilized, formation of the aldimine can lead to a transamination (as shown in Figure 20.15), to decarboxylation, to racemization, or to numerous side chain modifications. [Pg.1513]

In ideal semiquinone-radical structure, all rings and nitrogen should be chemically equivalent. As a result, at the potentials of the electrochemical stability of semiquinone radical structures, the observed bands should be intermediate between those expected for the benzoid and quinoid structures. During the second oxidation process which is accompanied by de-protonation, quick spectroscopic differentiation between the... [Pg.214]


See other pages where Structural quinoids intermediates is mentioned: [Pg.721]    [Pg.721]    [Pg.493]    [Pg.234]    [Pg.14]    [Pg.179]    [Pg.309]    [Pg.320]    [Pg.32]    [Pg.167]    [Pg.453]    [Pg.183]    [Pg.24]    [Pg.17]    [Pg.514]    [Pg.273]    [Pg.765]    [Pg.718]    [Pg.100]    [Pg.78]    [Pg.202]    [Pg.718]    [Pg.179]    [Pg.309]    [Pg.157]    [Pg.179]    [Pg.309]    [Pg.92]    [Pg.227]    [Pg.617]    [Pg.191]    [Pg.437]    [Pg.449]    [Pg.46]    [Pg.273]    [Pg.387]    [Pg.378]   
See also in sourсe #XX -- [ Pg.502 ]




SEARCH



Intermediate structures

Quinoid structures

Quinoids

© 2024 chempedia.info