Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stresses Micromechanical Effects upon Release from the Shocked State

Internal Stresses Micromechanical Effects upon Release from the Shocked State [Pg.237]

We imagine a finite-duration shock pulse arriving at some point in the material. The strain as a function of time is shown as the upper diagram in Fig. 7.11 for elastic-perfectly-plastic response (solid line) and quasi-elastic response generally observed (dash-dot line). The maximum volume strain = 1 - PoIp is designated [Pg.237]

When we translate these observations into Lagrangian wave speed, the data would look like that shown in the lower diagram of Fig. 7.11. The points e and q represent volume strains at whieh elastie-perfeetly-plastie release (e) and quasi-elastie release (q) would undergo transition to large-seale, reverse plastie flow (reverse yield point). The question is the following What is responsible for quasi-elastie release from the shoeked state, and what do release-wave data tell us about the mieromeehanieal response in the shoeked state  [Pg.238]

This process of backward dislocation motion produces reverse plastic flow immediately upon reduction of longitudinal stress from the shocked state. A modification of the Orowan equation, (7.1), to the current situation is [Pg.239]

The Lagrangian sound speed is obtained in the following heuristic way. We consider small departures from the shock-compressed state, where the bulk and shear moduli are K and G. The Eulerian sound speed c is then given by [Pg.240]




SEARCH



Effective stress

MICROMECHANICAL

Micromechanics

Micromechanism

Releaser effect

Shock effects

Stressed state

© 2024 chempedia.info