Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress reactions overview

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intennoleciilar energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [U, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32] and the literature cited therein. These cover a variety of aspects of tire topic and fiirther, more detailed references will be given tliroiighoiit this review. We should mention here the energy transfer processes, which are of fiindamental importance but are beyond the scope of this review, such as electronic energy transfer by mechanisms of the Forster type [33, 34] and related processes. [Pg.1046]

A broad array of mechanistic pathways may be considered in the different variants of nickel-catalyzed reductive couplings of aldehydes and alkynes, and a generalized overview of possible mechanisms has been previously described [10]. Whereas a comprehensive mechanistic study has not been presented, a number of key observations have been illustrated that provide insight into how the nickel-catalyzed reductive couplings of aldehydes and alkynes proceed. It should be stressed at the outset that the different reaction variants may proceed by different mechanisms. [Pg.24]

Strategic importance of biocatalyzed synthetic transformations in terms of eco-compatibility and cheaper processes has been widely stressed previously. Among the developed biotransformations catalyzed by nitrilases or nitrile hydratases/ amidases systems, a special interest is focused toward stereoselective reactions able to give access to molecules otherwise impossible to obtain by classical chemical routes. Hereby, selected examples aim to offer an overview of research in this direction. Examples of industrial processes using nitrile hydrolyzing biocatalysts are also illustrated. [Pg.377]

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intermolecular energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [JT,... [Pg.1046]

Herein, we describe the different types of chemical simulatimi methods that can be used to study mechanochemical reactions at molecular and bulk levels, with the goal of providing basic information regarding these simulation techniques. Section 2 focuses on molecular mechanochemistry and describes models that can be used to predict the energies and properties of systems exposed to applied forces. Section 3 provides an overview of techniques used to study bulk systems that are exposed to compressive and shear stresses. Concluding remarks are provided in Sect. 4. [Pg.40]

During the operational lifetime of most catalysts, their activity decreases. Interestingly, the time period of economic operation can be very different even for commercial catalysts and ranges from a couple of seconds to many years. Table 2.3.8 gives an overview of some important heterogeneous catalyzed reactions, their reaction conditions, deactivation mechanism, possible regeneration options, and lifetime. It can be seen from the table that there is no direct correlation between thermal stress and lifetime. [Pg.32]

Information theory has been shown to provide a novel and attractive perspective on the entropic origins of the chemical bond. It also offers a complementary outlook on the transformation of the electronic information content in the elementary chemical reactions. In this short overview, we have first introduced the key IT concepts and techniques to be used in such a complementary analysis of electron distributions in molecular systems. They have been subsequently applied to explore the bonding pattern in typical molecules in terms of the information distribution, the bond localization/multiphcity, and its ionic/covalent composition. The use of the information densities as local probes of electronic distributions in molecules has been advocated and the importance of the nonadditive entropy/information measures in extracting subtle changes due to the bond formation has been stressed. The use of the CG density, of the nonadditive Fisher information (electronic kinetic energy) in the AO resolution, as an efficient localization probe of the direct chemical bonds has been validated. [Pg.89]


See other pages where Stress reactions overview is mentioned: [Pg.51]    [Pg.111]    [Pg.584]    [Pg.192]    [Pg.2248]    [Pg.100]    [Pg.324]    [Pg.90]    [Pg.449]    [Pg.342]    [Pg.65]    [Pg.184]    [Pg.345]    [Pg.143]    [Pg.15]   
See also in sourсe #XX -- [ Pg.80 , Pg.81 , Pg.92 ]




SEARCH



Reactions overview

© 2024 chempedia.info