Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stille reaction addition reactions

Advantages of the Stille reaction include neutral conditions under which the reaction takes place, often with full retention of stereochemistry, and compatibility with nearly all functional groups thus eliminating additional steps required for protection and deprotection. Conversely, a highly undesirable drawback is the use of toxic tin compounds and the ensuing difficult removal of these from the reaction mixture. [Pg.14]

The conversion of a nitrile R —CN into a ketone R —CO—R demonstrates that polarized multiple bonds other than C=0 also react with Grignard reagents, and that such reactions are synthetically useful. Esters 22 and acid chlorides can react subsequently with two equivalents of RMgX the initially formed tetravalent product from the first addition reaction can decompose to a ketone that is still reactive, and reacts with a second RMgX. The final product 23 then contains two substituents R, coming from the Grignard reagent ... [Pg.147]

It is important to note that benzene does not behave like a typical cyclic olefin in that the benzene ring undergoes ionic substitution rather than addition reactions the ring also resists hydrogenation and is chemically more inert. Despite this, it is still a common practice to represent benzene with three double bonds as if it were 2,4,6-cyclohexatriene,... [Pg.310]

Addition reactions of thiopyrylium salts with nucleophiles (83AHC145, Section IV,B) have widely been used for the preparation of various thiopyrans in the last decade (92MI3). On the other hand, the application of catalytic processes still seems to be rare. [Pg.189]

Still another, and chains, long or short, may be built up. This is the mechanism of free-radical polymerization. Short polymeric molecules (called telomers), formed in this manner, are often troublesome side products in free-radical addition reactions. [Pg.978]

The general catalytic cycle of the Stille reaction involves oxidative addition, transmetallation, and reductive elimination. [Pg.731]

In addition to the reactions discussed above, there are still other alkyne reactions carried out in aqueous media. Examples include the Pseudomonas cepacia lipase-catalyzed hydrolysis of propargylic acetate in an acetone-water solvent system,137 the ruthenium-catalyzed cycloisomerization-oxidation of propargyl alcohols in DMF-water,138 an intramolecular allylindination of terminal alkyne in THF-water,139 and alkyne polymerization catalyzed by late-transition metals.140... [Pg.140]

In many cases the transformations may be more complex than indicated by Eqs. (9.89)-(9.100). An example of this is the photochemistry of cis,cis-1,3-cyclooctadiene [Eq. (9.94)].<169) A close examination of this reaction indicates that bicyclo[4.2.0]oct-7-ene is formed but in low relative yields during the initial reaction (see Table 9.9). In addition, the cis,trans-1,3-cyclooctadiene is formed and then consumed as the reaction proceeds. Fonken showed that the bicyclooctene initially formed, however, was not from thermal isomerization of the cis,trans-diene. Still a third reaction was the 1,3 sigmatropic hydrogen shift to form the cis, cis-1,4-cyclooctadiene ... [Pg.212]

Formally, the metal oxidation number x increases to x+2, while the coordination number n of ML, increases to n+2. If such oxidative addition reactions are intended to be the first step in a sequence of transformations, which eventually will lead to a functionalization reaction of C-X, then the oxidative addition product 2 should still be capable of coordinating further substrate molecules in order to initiate their insertion, subsequent reductive elimination, or the like [1], This is why 14 electron intermediates MLu (1) are of particular interest. In this case species 2 are 16 electron complexes themselves, and as such may still be reactive enough to bind another reaction partner. [Pg.232]

Compared to the previously described transition metal-catalyzed transformations in this chapter, microwave-assisted Stille reactions [74] involving organotin reagents as coupling partners are comparatively rare. A few examples describing both inter- and intramolecular Stille reactions in heterocyclic systems are summarized in Scheme 6.38 [47, 75-77]. Additional examples involving fluorous Stille reactions are described in Section 7.3. [Pg.132]

A still more complicated reaction is the chemiluminescent oxidation of sodium hydrogen sulfide, cysteine, and gluthathione by oxygen in the presence of heavy metal catalysts, especially copper ions 60>. When copper is used in the form of the tetrammin complex Cu(NH3) +, the chemiluminescence is due to excited-singlet oxygen when the catalyst is copper flavin mononucleotide (Cu—FMN), additional emission occurs from excited flavin mononucleotide. From absorption spectroscopic measurements J. Stauff and F. Nimmerfall60> concluded that the first reaction step consists in the addition of oxygen to the copper complex ... [Pg.79]

The oxidative addition reaction of the type shown in Equation (9) were used to prepare some of the first selenolate and tellurolate complexes still used today. [Pg.35]

Microstructured reactors made it possible to take advantage of the fast kinetics of the Michael addition reaction, while still ensuring efficient heat removal and avoiding thermal overshooting. Yields ranging from 95% to 100% were obtained, at reaction times of 1-10 min instead of the 24-h batch operation a high-p,T operation was established. High... [Pg.220]


See other pages where Stille reaction addition reactions is mentioned: [Pg.255]    [Pg.362]    [Pg.492]    [Pg.1115]    [Pg.49]    [Pg.198]    [Pg.80]    [Pg.17]    [Pg.230]    [Pg.234]    [Pg.7]    [Pg.46]    [Pg.251]    [Pg.82]    [Pg.36]    [Pg.86]    [Pg.108]    [Pg.3]    [Pg.277]    [Pg.228]    [Pg.732]    [Pg.41]    [Pg.191]    [Pg.192]    [Pg.298]    [Pg.26]    [Pg.389]    [Pg.87]    [Pg.310]    [Pg.327]    [Pg.14]    [Pg.30]    [Pg.95]    [Pg.318]    [Pg.788]    [Pg.369]    [Pg.370]    [Pg.471]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Stille reaction

© 2024 chempedia.info