Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereogenic center formation

As chemists proceeded to synthesize more complicated stmctures, they developed more satisfactory protective groups and more effective methods for the formation and cleavage of protected compounds. At first a tetrahydropyranyl acetal was prepared, by an acid-catalyzed reaction with dihydropyran, to protect a hydroxyl group. The acetal is readily cleaved by mild acid hydrolysis, but formation of this acetal introduces a new stereogenic center. Formation of the 4-methoxytetrahy-dropyranyl ketal eliminates this problem. [Pg.2]

The reaction of vinyloxiranes with malonate proceeds regio- and stereose-lectively. The reaction has been utilized for the introduction of a 15-hydroxy group in a steroid related to oogoniol (265)(156]. The oxirane 264 is the J-form and the attack of Pd(0) takes place from the o-side by inversion. Then the nucleophile comes from the /i-side. Thus overall reaction is sT -StM2 type, in the intramolecular reaction, the stereochemical information is transmitted to the newly formed stereogenic center. Thus the formation of the six-membered ring lactone 267 from 266 proceeded with overall retention of the stereochemistry, and was employed to control the stereochemistry of C-15 in the prostaglandin 268[157]. The method has also been employed to create the butenolide... [Pg.325]

The introduction of a THP ether onto a chiral molecule results in the formation of diastereomers because of the additional stereogenic center present in the tetrahy-dropyran ring (which can make the interpretation of NMR spectra somewhat troublesome at times). Even so, this is one of the most widely used protective groups employed in chemical synthesis because of its low cost, the ease of its installation, its general stability to most nonacidic reagents, and the ease with which it can be removed. [Pg.31]

In some cases the formation of a dioxolane or dioxan -can result in the generation of a new stereogenic center, either with complete selectivity or as a mixture of the two possible isomers. Since the new center is removed on deprotection, it should not seriously complicate the use of those protective groups that generate a new stereogenic center. [Pg.119]

Preparation of enantiomerically enriched materials by use of chiral catalysts is also based on differences in transition-state energies. While the reactant is part of a complex or intermediate containing a chiral catalyst, it is in a chiral environment. The intermediates and complexes containing each enantiomeric reactant and a homochiral catalyst are diastereomeric and differ in energy. This energy difference can then control selection between the stereoisomeric products of the reaction. If the reaction creates a new stereogenic center in the reactant molecule, there can be a preference for formation of one enantiomer over the other. [Pg.92]

The addition of methylmagnesium iodide to 2-phenylpropanal is stereoselective in producing twice as much syn-3-phenyl-2-butanol as the anti isomer (entry 5). The stereoselective formation of a particular configuration at a new stereogenic center in a reaction of a chiral reactant is called asymmetric induction. This particular case is one in which the stereochemistry can be predicted on the basis of an empirical correlation called Cram s rule. The structural and mechanistic basis of Cramls rule will be discussed in Chapter 3. [Pg.102]

The Diels-Alder reaction of a diene with a substituted olefinic dienophile, e.g. 2, 4, 8, or 12, can go through two geometrically different transition states. With a diene that bears a substituent as a stereochemical marker (any substituent other than hydrogen deuterium will suffice ) at C-1 (e.g. 11a) or substituents at C-1 and C-4 (e.g. 5, 6, 7), the two different transition states lead to diastereomeric products, which differ in the relative configuration at the stereogenic centers connected by the newly formed cr-bonds. The respective transition state as well as the resulting product is termed with the prefix endo or exo. For example, when cyclopentadiene 5 is treated with acrylic acid 15, the cw fo-product 16 and the exo-product 17 can be formed. Formation of the cw fo-product 16 is kinetically favored by secondary orbital interactions (endo rule or Alder rule) Under kinetically controlled conditions it is the major product, and the thermodynamically more stable cxo-product 17 is formed in minor amounts only. [Pg.91]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

The lower diastereoselectivity found with aldehyde 15 (R = CH3) can be explained by the steric influence of the two methyl substituents in close vicinity to the stereogenic center, which probably diminishes the ability of the ether oxygen to coordinate. In contrast, a significant difference in the diastereoselectivity was found in the additions of phenyllithium and phenylmagnesium bromide to isopropylidene glyceraldehyde (17)58 (see also Section 1.3.1.3.6.). Presumably the diastereo-sclcctivity of the phenyllithium addition is determined by the ratio of chelation-controlled to nonchelation-controlled attack of the nucleophile, whereas in the case of phenylmagnesium bromide additional chelation with the / -ether oxygen may occur. Formation of the -chelate 19 stabilizes the Felkin-Anh transition state and therefore increases the proportion of the anZz -diastereomeric addition product. [Pg.52]


See other pages where Stereogenic center formation is mentioned: [Pg.753]    [Pg.753]    [Pg.65]    [Pg.1]    [Pg.102]    [Pg.1]    [Pg.49]    [Pg.86]    [Pg.242]    [Pg.34]    [Pg.183]    [Pg.241]    [Pg.245]    [Pg.287]    [Pg.331]    [Pg.392]    [Pg.452]    [Pg.463]    [Pg.490]    [Pg.533]    [Pg.534]    [Pg.538]    [Pg.569]    [Pg.569]    [Pg.634]    [Pg.641]    [Pg.624]    [Pg.295]   


SEARCH



Stereogenic center

© 2024 chempedia.info