Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Step polymerization hyperbranched polymer

Dendrimers are different from hyperbranched polymers. They can be produced using a bottom-up approach and iterative sequences of reaction steps, while hyperbranched polymers are the products of noniterative polymerization [2],... [Pg.159]

Monomers of die type Aa B. are used in step-growth polymerization to produce a variety of polymer architectures, including stars, dendrimers, and hyperbranched polymers.26 28 The unique architecture imparts properties distinctly different from linear polymers of similar compositions. These materials are finding applications in areas such as resin modification, micelles and encapsulation, liquid crystals, pharmaceuticals, catalysis, electroluminescent devices, and analytical chemistry. [Pg.8]

Dendrimers produced by divergent or convergent methods are nearly perfectly branched with great structural precision. However, the multistep synthesis of dendrimers can be expensive and time consuming. The treelike structure of dendrimers can be approached through a one-step synthetic methodology.31 The step-growth polymerization of ABx-type monomers, particularly AB2, results in a randomly branched macromolecule referred to as hyperbranch polymers. [Pg.8]

Hyperbranched polymers are characterized by their degree of branching (DB). Hie DB of polymers obtained by the step-growth polymerization of AB2-type monomers is defined by Eq. (2.1) in which dendritic units have two reacted B-groups, linear units have one reacted B-group, and terminal units have two unreacted B-groups191 ... [Pg.57]

Assuming that no intramolecular or side reactions take place and that all groups are equireactive, the polydispersity index, 7P, of hyperbranched polymers obtained by step-growth polymerization of ABX monomers is given by Eq. (2.2), where pA is die conversion in A groups.196 Note that the classical Flory relationship DPn = 1/(1 — pa) holds for ABX monomer polymerizations ... [Pg.57]

Alternatively, the one-step polymerization of branched monomers results in what is called a hyperbranched polymer [53] possessing a higher degree of polydispersity and lower degree of branching compared to the analogous dendrimer. [Pg.35]

The step-growth polymerization of ABx-monomers is by far the most intensively studied synthetic pathway to hyperbranched polymers. A number of AB2-monomers, suitable for step-growth polymerizations, are commercially available. This has, of course, initiated substantial activity in hyperbranched condensation polymers and a wide variety of examples have been reported in the literature [4],... [Pg.198]

Commercially available hyperbranched polymer, a poly(ester-amide) is currently being marketed by DSM under the product name Hybrane [13] (Figure 8.2). It is also a hydroxyl-functionalized product, but contains both amide and ester linkages. The synthesis is accomplished in two steps cyclic anhydrides are reacted with diisopropanolamine to give an amide-intermediate, possessing two hydroxyl groups and one carboxylic acid. The subsequent polymerization takes places via an oxazolinium intermediate which results in the formation of a... [Pg.200]

The first strategies to random hyperbranched polymers involved exclusively step-growth polymerizations. This limited the potential applications for these architectures to areas where only condensation-type polymers are acceptable. Frechet et al. [21] presented the first example of a hyperbranched vinyl polymerization in 1995, ] initiating the birth of a second generation of hyperbranched... [Pg.203]

The polymerization of AB -functional vinyl monomers is fundamentally different from the step-growth polymerization of AB2-monomers. Condensation of AB2-monomers results immediately in the formation of hyperbranched polymers since the reactivity of the end-groups are the same, regardless of what type of repeat unit (linear or dendritic) that is formed. [Pg.204]

A wide variety of monomers, such as (3,5-dibromophenyl)boronic acid, 3,5-bis(trimethylsiloxy)benzoyl chloride, 3,5-diacetoxybenzoic acid, and 2,2-dimethylol propionic acid have been used for the synthesis of hyperbranched polymers. A selection of these polymers are described in Sect. 3. The majority of the polymers are synthesized via step-wise polymerizations where A B monomers are bulk-polymerized in the presence of a suitable catalyst, typically an acid or a transesterification reagent. To accomphsh a satisfactory conversion, the low molecular weight condensation product formed during the reaction has to be removed. This is most often achieved by a flow of argon or by reducing the pressure in the reaction flask. The resulting polymer is usually used without any purification or, in some cases, after precipitation of the dissolved reaction mixture into a non-solvent. [Pg.8]

The solid-phase synthesis of dendritic polyamides was explored by Frechet et al. [49]. Inspired by the technique used by Merrifield for peptide synthesis, the same strategy was used to build hyperbranched polyamides onto a polymeric support. The idea was to ensure the preservation of the focal point and to ease the purification between successive steps. The resulting polymers were cleaved from the solid support, allowing ordinary polymer characterization. The reaction was found to be extremely sluggish beyond the fourth generation. [Pg.8]

Finally, hyperbranched polymer layers by surface-initiated step polymerization was intensively studied mainly by Bergbreiter et al. and Crooks et al. Patterned surfaces were prepared on the micrometer scale and a variety of functional groups introduced interesting optical, electrochemical, biological, and mechanical properties into the films. For a recent review on surface-initiated step polymerization resulting in branched polymer layers see [352]. [Pg.433]

Hyperbranched polymers can also be synthesized by chain polymerization, ring-opening polymerization, and combinations of ring-opening and step polymerization [Kim, 1998 Voit, 2000] (Secs. 3-6e, 3-15b-4, 3-15b-5, 3-15c, 5-4c). [Pg.177]

Hyperbranched polymers are formed by polymerization of AB,-monomers as first theoretically discussed by Flory. A wide variety of hyperbranched polymer structures such as aromatic polyethers and polyesters, aliphatic polyesters. polyphenylenes, and aromatic polyamides have been described in the literature. The structure of hyperbranched polymers allows some defects, i.e. the degree of branching (DB) is less than one. The synthesis of hyperbranched polymers can often be simplified compared to the one of dendrimers since it is not necessary to use protection/deprotection steps. The most common synthetic route follows a one-pot procedure " where AB,-monomers are condensated in the presence of a catalyst. Another method using a core molecule and an AB,-monomer has been described. ... [Pg.4]

The second method separates the functional groups into two monomers, which facilitates synthetic work and offers greater choices to monomeric structure. In the first step, A2 and B3 monomers couple together to form an AB2-type dimer that continues to react to form the hyperbranched architecture (Scheme 6). This is the case, only if the molar ratio of A2 to B3 is 1 1 and the initiation is considerably faster than the propagation [29]. It becomes immediately clear that the resultant structure is highly dependant on the type of monomers and the polymerization conditions. For the latter, it has been found that the mode of monomer addition plays a crucial role. Whereas the addition of a B3 monomer into a solution of A2 yields insoluble polymer gel, the opposite addition mode furnishes hyperbranched polymers with excellent solubility [30]. [Pg.8]

Because of the one-step polymerization procedure, hyperbranched polymers often contain not only D and T but also L repeating units. This can be expressed by DB, which is an important structural parameter of hyperbranched polymers. DB is estimated as the sum of the D and T units divided by the sum of all the three structural units, that is, D, T and L [41]. By definition, a linear polymer has no dendritic units and its DB is zero, while a perfect dendrimer has no linear units and its DB is thus unity. Frey has pointed out that DB statistically approaches 0.5 in the case of polymerization of AB2 monomers, provided that all the functional groups possess the same reactivity [42]. The structures of the hb-PYs could be analyzed by spectroscopic methods such as NMR and FTIR. The DB value of the phosphorous-containing polymer hb-F21, for example, was estimated to be 53% from its 31P NMR chemical shifts (Chart 1). [Pg.11]

Our research interest in this field is based on the perception that these dendritic polymers could be useful as polymer-rheology control agents as well as spherical, multifunctional macromonomers. Hyperbranched polymers, which were not only thermally and chemically robust under the conditions used, but also could be economically obtained, were created to evaluate these concepts. The latter requirement led us to pursue the one-step polymerization of AB -type monomers. We will review mostly the synthesis of aromatic polymers with stable chemical linkages prepared by the single-step direct method, and we will briefly compare them with polymers made by more controlled multistep syntheses. [Pg.127]

Thus a step-polymerization system synthesized from an AB2 monomer should be highly branched but never reach gelation even at full conversion of the available functional groups. This is the basis of the formation of hyperbranched polymers by step-growth polymerization (Jikei and Kakimoto, 2001) and a reaction scheme for AB2 hyperbranching is shown in Scheme 1.11. [Pg.43]

The versatility of polymerization resides not only in the different types of polymerization reactions and types of reactants that can be polymerized, but also in variations allowed by step-growth synthesis, copolymerization, and stereospecific polymerization. Chain polymerization is the most important kind of copolymerization process and is considered separately in Chapter 7, while Chapter 9 describes the stereochemistry of polymerization with emphasis on the synthesis of polymers with stereoregular structures by the appropriate choice of polymerization conditions, including the more recent metallocene-based Ziegler-Natta systems. Synthetic approaches to starburst and hyperbranched polymers which promise to open up new applications in the future are considered in an earlier chapter dealing with step-growth polymerization. [Pg.859]

Many methods have been reported to synthesize hyperbranched polymers. These materials were first reported in the late 1980s and early 1990s by Odian and Tomalia [9], Kim and Webster [10], and Hawker and Frechet [11]. As early as 1952, Hory actually developed a model for the polymerization of AB -type monomers and the branched structures that would result, identified as random AB polycondensates [46], Condensation step-growth polymerization is likely the most commonly used approach however, it is not the only method reported for the synthesis of statistically branched dendritic polymers chain growth and ringopening polymerization methods have also been applied. [Pg.567]

In general, hyperbranched polymers are obtained by the polymerization of an AB2 monomer. Thus, in the first step, the hyperbranched PES must be manufactured. For example, the synthesis of 3,5-difluoro-4 -hydroxydi-phenyl sulfone can be accomplished by the reaction of 3,5-difluorophenyl-magnesium bromide with 4-methoxyphenylsulfonyl chloride, followed by deprotection of the phenol group with HBr in acetic acid." ... [Pg.253]

Hyperbranched polymers are synthesized in a one-step method, often from AB monomers but also by combining A +B (x>3) monomers or variations of those. Polymerization methods have been applied that involve polycondensation, polyaddition, and ring-opening or self-condensing vinyl polymerization. Even though the one-pot synthetic approach leads to imperfectly branched structures because of uncontrolled growth, it is more suitable for the preparation on a larger scale and thus for commercial use. Nowadays, different... [Pg.199]


See other pages where Step polymerization hyperbranched polymer is mentioned: [Pg.32]    [Pg.2]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.28]    [Pg.33]    [Pg.288]    [Pg.71]    [Pg.201]    [Pg.203]    [Pg.103]    [Pg.26]    [Pg.791]    [Pg.4]    [Pg.127]    [Pg.98]    [Pg.306]    [Pg.199]    [Pg.559]    [Pg.574]    [Pg.666]    [Pg.587]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 ]

See also in sourсe #XX -- [ Pg.175 , Pg.176 ]




SEARCH



Hyperbranched

Hyperbranched polymers

Hyperbranched polymers polymerization

Hyperbranching

Step polymerization

Step polymers

© 2024 chempedia.info