Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steady-state nonisothermal multiple chemical reactions

This set of first-order ODEs is easier to solve than the algebraic equations where all the time derivatives are zero. The initial conditions are that a ut = no, bout = bo,... at t = 0. The long-time solution to these ODEs will satisfy Equations (4.1) provided that a steady-state solution exists and is accessible from the assumed initial conditions. There may be no steady state. Recall the chemical oscillators of Chapter 2. Stirred tank reactors can also exhibit oscillations or more complex behavior known as chaos. It is also possible that the reactor has multiple steady states, some of which are unstable. Multiple steady states are fairly common in stirred tank reactors when the reaction exotherm is large. The method of false transients will go to a steady state that is stable but may not be desirable. Stirred tank reactors sometimes have one steady state where there is no reaction and another steady state where the reaction runs away. Think of the reaction A B —> C. The stable steady states may give all A or all C, and a control system is needed to stabilize operation at a middle steady state that gives reasonable amounts of B. This situation arises mainly in nonisothermal systems and is discussed in Chapter 5. [Pg.120]

Multiple steady-state behavior is a classic chemical engineering phenomenon in the analysis of nonisothermal continuous-stirred tank reactors. Inlet temperatures and flow rates of the reactive and cooling fluids represent key design parameters that determine the number of operating points allowed when coupled heat and mass transfer are addressed, and the chemical reaction is exothermic. One steady-state operating point is most common in CSTRs, and two steady states occur most infrequently. Three stationary states are also possible, and their analysis is most interesting because two of them are stable whereas the other operating point is unstable. [Pg.105]

The exciting issue of steady-state multiplicity has attracted the attention of many researchers. First the focus was on exothermic reactions in continuous stirred tanks, and later on catalyst pellets and dispersed flow reactors as well as on multiplicity originating from complex isothermal kinetics. Nonisothermal catalyst pellets can exhibit steady-state multiplicity for exothermic reactions, as was demonstrated by P.B. Weitz and J.S. Hicks in a classical paper in the Chemical Engineering Science in 1962. The topic of multiplicity and oscillations has been put forward by many researchers such as D. Luss, V. Balakotaiah, V. Hlavacek, M. Marek, M. Kubicek, and R. Schmitz. Bifurcation theory has proved to be very useful in the search for parametric domains where multiple steady states might appear. Moreover, steady-state multiplicity has been confirmed experimentally, one of the classical papers being that of A. Vejtassa and R.A. Schmitz in the AIChE Journal in 1970, where the multiple steady states of a CSTR with an exothermic reaction were elegantly illustrated. [Pg.378]

In the general case of nonisothermal shrinking-core systems controlled both by chemical reaction and diffusion, the thermal effect of the reaction may bring about multiple steady states and instability due to sudden transition of rate-controlling steps during the reaction. The problem of thermal instability in noncatalytic gas-solid reactions was first pointed out by Cannon and Denbigh [37] and has been discussed by Shen and Smith [23] and Wen and coworkers [38, 39]. [Pg.99]

In the transition region between regimes I and JJ where the chemical reaction and diffusion present a comparable resistance to the overall progress of reaction, multiple solutions may occur and the possibility of instability arises when the reaction is exothermic [15]. The criteria for the existence of multiple steady state for chemical reactions in porous catalyst pellets have been studied extensively [17-21]. The effect of net gas generation or consumption on nonisothermal reaction in a porous solid was analyzed by Weekman [22]. [Pg.123]


See other pages where Steady-state nonisothermal multiple chemical reactions is mentioned: [Pg.230]    [Pg.471]    [Pg.104]    [Pg.161]   
See also in sourсe #XX -- [ Pg.543 ]




SEARCH



Chemical state

Multiple chemical reactions

Multiple reactions

Multiple reactions nonisothermal

Multiple steady states

Nonisothermal

Nonisothermal Multiple Chemical Reactions

Nonisothermal reactions steady-state

Reaction multiple reactions

Reaction steady-state

State multiplicity

Steady states, multiplicity

Steady-state nonisothermal

© 2024 chempedia.info