Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Standard electrode potentials applications

The metal with the more negative corrosion potential in the environmental conditions prevailing (note that the standard electrode potentials are seldom applicable and the galvanic series can be misleading)... [Pg.153]

It must be emphasised that standard electrode potential values relate to an equilibrium condition between the metal electrode and the solution. Potentials determined under, or calculated for, such conditions are often referred to as reversible electrode potentials , and it must be remembered that the Nernst equation is only strictly applicable under such conditions. [Pg.63]

A model has been considered for Sn2 reactions, based on two interacting states. Relevant bond energies, standard electrode potentials, solvent contribntions (nonequi-librinm polarization), and steric effects are included. Applications of the theory are made to the cross-relation between rate constants of cross- and identity reactions, experimental entropies and energies of activation, the relative rates of Sn2 and ET reactions, and the possible expediting of an outer sphere ET reaction by an incipient SN2-type interaction (Marcus, 1997). [Pg.83]

Here, AH(A-B) is the partial molar net adsorption enthalpy associated with the transformation of 1 mol of the pure metal A in its standard state into the state of zero coverage on the surface of the electrode material B, ASVjbr is the difference in the vibrational entropies in the above states, n is the number of electrons involved in the electrode process, F the Faraday constant, and Am the surface of 1 mol of A as a mono layer on the electrode metal B [70]. For the calculation of the thermodynamic functions in (12), a number of models were used in [70] and calculations were performed for Ni-, Cu-, Pd-, Ag-, Pt-, and Au-electrodes and the micro components Hg, Tl, Pb, Bi, and Po, confirming the decisive influence of the choice of the electrode material on the deposition potential. For Pd and Pt, particularly large, positive values of E5o% were calculated, larger than the standard electrode potentials tabulated for these elements. This makes these electrode materials the prime choice for practical applications. An application of the same model to the superheavy elements still needs to be done, but one can anticipate that the preference for Pd and Pt will persist. The latter are metals in which, due to the formation of the metallic bond, almost or completely filled d orbitals are broken up, such that these metals tend in an extreme way towards the formation of intermetallic compounds with sp-metals. The perspective is to make use of the Pd or Pt in form of a tape on which the tracer activities are electrodeposited and the deposition zone is subsequently stepped between pairs of Si detectors for a-spectroscopy and SF measurements. [Pg.197]

The standard electrode potential for an oxidation-reduction process is often called the standard redox potential of the pair of ions involved. A table of redox potentials finds immediate application in inorganic chemistry. [Pg.183]

The electrochemical series tabulates standard electrode potentials. Some sources call the electrochemical series oxi-dation/reduction potentials, electromotive series, and so on. The reference state of electrochemical series is the hydrogen evolution reaction, or H+/H2 reaction. Its standard electrode potential has been universally assigned as 0 V. This electrode is the standard hydrogen electrode (SHE) against which all others are compared. For example, the standard electrode potential of the Fe/Fe2+ reaction is —0.440 V and that of Cu/Cu2+ reaction is +0.337 V. The standard electrode potentials are calculated from Gibbs free energy values by Eq. (8) that is applicable only in the above-mentioned standard state. [Pg.165]

Numerous applications of standard electrode potentials have been made in various aspects of electrochemistry and analytical chemistry, as well as in thermodynamics. Some of these applications will be considered here, and others will be mentioned later. Just as standard potentials which cannot be determined directly can be calculated from equilibrium constant and free energy data, so the procedure can be reversed and electrode potentials used for the evaluation, for example, of equilibrium constants which do not permit of direct experimental study. Some of the results are of analjrtical interest, as may be shown by the following illustration. Stannous salts have been employed for the reduction of ferric ions to ferrous ions in acid solution, and it is of interest to know how far this process goes toward completion. Although the solutions undoubtedly contain complex ions, particularly those involving tin, the reaction may be represented, approximately, by... [Pg.478]

The application of standard electrode potential data to many systems of interest in analytical chemistry is further complicated by association, dissociation, complex formation, and solvolysis equilibria involving the species that appear in the Nemst equation. These phenomena can be taken into account only if their existence is known and appropriate equilibrium constants are available. More often than not, neither of these requirements is met and significant discrepancies arise as a consequence. For example, the presence of 1 M hydrochloric acid in the iron(Il)/iron(llI) mixture we have just discussed leads to a measured potential of + 0.70 V in 1 M sulfuric acid, a potential of -I- 0.68 V is observed and in 2 M phosphoric acid, the potential is + 0.46 V. In each of these cases, the iron(II)/iron(III) activity ratio is larger because the complexes of iron(III) with chloride, sulfate, and phosphate ions are more stable than those of iron(II) thus, the ratio of the species concentrations, [Fe ]/[Fe ], in the Nemst equation is greater than unity and the measured potential is less than the standard potential. If fomnation constants for these complexes were available, it would be possible to make appropriate corrections. Unfortunately, such data are often not available, or, if they are, they are not very reliable. [Pg.517]

Chapter 18 Introduction to Electrochemistry 490 Chapter 19 Applications of Standard Electrode Potentials 523 Chapter 20 Applications of Oxidation/Reduction Titrations 560 Chapter 21 Potentiometry 588... [Pg.1162]

The most important application of electrode potentials is the prediction of the spontaneity of redox reactions. Standard electrode potentials can be used to determine the spontaneity of redox reactions in general, whether or not the reactions can take place in electrochemical cells. [Pg.868]


See other pages where Standard electrode potentials applications is mentioned: [Pg.818]    [Pg.1231]    [Pg.410]    [Pg.177]    [Pg.844]    [Pg.1035]    [Pg.370]    [Pg.488]    [Pg.360]    [Pg.109]    [Pg.420]    [Pg.189]    [Pg.478]    [Pg.487]    [Pg.518]    [Pg.523]    [Pg.524]    [Pg.526]    [Pg.528]    [Pg.530]    [Pg.532]    [Pg.534]    [Pg.536]    [Pg.538]    [Pg.540]    [Pg.542]    [Pg.544]    [Pg.546]    [Pg.548]    [Pg.550]    [Pg.552]    [Pg.554]    [Pg.556]    [Pg.558]    [Pg.370]    [Pg.818]   


SEARCH



Applicable standards

Applications standards

Electrode standard

Electrodes applications

Electrodes standardization

Potential applications

Potential standard

Potentials, standardization

© 2024 chempedia.info