Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilisation-molecular weight

Polyolefins such as polyethylene and polypropylene contain only C—C and C—H bonds and may be considered as high molecular weight paraffins. Like the simpler paraffins they are somewhat inert and their major chemical reaction is substitution, e.g. halogenation. In addition the branched polyethylenes and the higher polyolefins contain tertiary carbon atoms which are reactive sites for oxidation. Because of this it is necessary to add antioxidants to stabilise the polymers against oxidation Some polyolefins may be cross-linked by peroxides. [Pg.95]

Other additives that may be incorporated include sodium hydrogen phosphates as buffering agents to stabilise that pH of the reaction medium, lauryl mercaptan or trichlorethylene as chain transfer agents to control molecular weight, a lubricant such as stearic acid and small amounts of an emulsifier such as sodium lauryl sulphate. [Pg.404]

More recently, the same author [41] has described polymer analysis (polymer microstructure, copolymer composition, molecular weight distribution, functional groups, fractionation) together with polymer/additive analysis (separation of polymer and additives, identification of additives, volatiles and catalyst residues) the monograph provides a single source of information on polymer/additive analysis techniques up to 1980. Crompton described practical analytical methods for the determination of classes of additives (by functionality antioxidants, stabilisers, antiozonants, plasticisers, pigments, flame retardants, accelerators, etc.). Mitchell... [Pg.18]

Synthesis of compounds having an increased molecular weight represents the most natural way of producing physically persistent additives in demanding applications, which resist extraction or leaching. Pospisil [576] has described such functionalised oligomers and polymers as stabiliser systems for... [Pg.144]

Occasionally there is the need for simultaneous determination of MW, MWD of polymers and identifica-tion/quantilication of additives [38]. This was the case for polymer and additive analysis of SBR/(softeners, flavour agents, stabilisers) (chewing gum) [41]. The many constituents of the SBR portion of the sample were not resolved, since adjacent components were similar in size. It should be stressed, however, that the need for simultaneous determination of the molecular weight of polymers and the identification/quantification of additives is exceptional rather than the rule. The determination of molecular weight distributions by SEC has indicated that oligomer fractions analysed by dissolution and (Soxhlet) extraction methods may differ essentially [42],... [Pg.695]

Hsiao et al. [11] have studied the use of MALDI ionisation for the detection of antioxidants and hindered amine light stabilisers (HALS) in polyethylene extracts. Using 2,5-dihydroxybenzoic acid as matrix, diagnostic spectra were obtained on standards, but the presence of soluble low molecular weight polyethylene in extract solutions caused some problems with ionisation suppression. [Pg.575]

One drawback of high-temperature GC analysis is that sample degradation for the high molecular weight AEs and APEOs might occur. High-temperature capillary columns are coated with a stabilised bonded polysiloxane film, which allows a column oven temperature of up to 400°C. [Pg.91]

The most widely studied deformable systems are emulsions. These can come in many forms, with oil in water (O/W) and water in oil (W/O) the most commonly encountered. However, there are multiple emulsions where oil or water droplets become trapped inside another drop such that they are W/O/W or O/W/O. Silicone oils can become incompatible at certain molecular weights and with different chemical substitutions and this can lead to oil in oil emulsions O/O. At high concentrations, typical of some pharmaceutical creams, cosmetics and foodstuffs the droplets are in contact and deform. Volume fractions in excess of 0.90 can be achieved. The drops are separated by thin surfactant films. Selfbodied systems are multicomponent systems in which the dispersion is a mixture of droplets and precipitated organic species such as a long chain alcohol. The solids can form part of the stabilising layer - these are called Pickering emulsions. [Pg.279]

Steric hindrance may hamper the correct stereochemistry required for 13-elimination, and perhaps this can be used to stabilise our metal alkyl complex. In the modem polymerisation catalysts for polypropene this feature has actually been observed, which leads to higher molecular weight polymers. This now forms part of the design of new catalysts. [Pg.36]

Emulsion polymerisation is a special case of heterogeneous addition polymerisation in which the reaction kinetics are modified because the A are compartmentalised in small polymer particles [48, 49]. These particles are usually dispersed in water and reaction (78) occurs in the aqueous phase. Initiating radicals diffuse to the particles which are stabilised by surfactant material. Chain termination becomes retarded physically and a relatively high polymerisation rate is obtained. If chain transfer is not prominent, a high molecular weight polymer is produced. The polymerisation rate is given by the expression... [Pg.135]

AMP-95 is a non-polymeric charge stabiliser because of its organic structure and low molecular weight of 89 it is often referred to as a micro dispersant (Figure 1). [Pg.47]

Water-in-oil concentrated emulsions have also been utilised in the preparation of polymer latexes, from hydrophilic, water-soluble monomers. Kim and Ruckenstein [178] reported the preparation of polyacrylamide particles from a HIPE of aqueous acrylamide solution in a non-polar organic solvent, such as decane, stabilised by sorbitan monooleate (Span 80). The stability of the emulsion decreased when the weight fraction of acrylamide in the aqueous phase exceeded 0.2, since acrylamide is more hydrophobic than water. Another point of note is that the molecular weights obtained were lower compared to solution polymerisation of acrylamide. This was probably due to a degree of termination by chain transfer from the tertiary hydroxyl groups on the surfactant head group. [Pg.206]


See other pages where Stabilisation-molecular weight is mentioned: [Pg.472]    [Pg.466]    [Pg.534]    [Pg.617]    [Pg.677]    [Pg.824]    [Pg.194]    [Pg.122]    [Pg.123]    [Pg.114]    [Pg.4]    [Pg.20]    [Pg.144]    [Pg.215]    [Pg.260]    [Pg.266]    [Pg.465]    [Pg.530]    [Pg.558]    [Pg.722]    [Pg.740]    [Pg.117]    [Pg.439]    [Pg.40]    [Pg.280]    [Pg.20]    [Pg.55]    [Pg.3]    [Pg.7]    [Pg.17]    [Pg.230]    [Pg.144]    [Pg.266]    [Pg.140]    [Pg.53]    [Pg.42]    [Pg.99]   
See also in sourсe #XX -- [ Pg.650 ]




SEARCH



Stabilisation Stabilise

Stabilisation Stabilised

Stabilisation Stabiliser

Stabilisation stabilisates

Stabilise

Stabilisers

© 2024 chempedia.info