Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Squalene, biosynthesis oxide

The Opening of Squalene-2,3-Epoxide Steroids are tetracyclic compounds that serve a wide variety of biological functions, including hormones (sex hormones), emulsifiers (bile acids), and membrane components (cholesterol). The biosynthesis of steroids is believed to involve an acid-catalyzed opening of squalene-2,3-epoxide (Figure 14-6). Squalene is a member of the class of natural products called terpenes (see Section 25-8). The enzyme squalene epoxidase oxidizes squalene to the epoxide,... [Pg.651]

The details of squalene biosynthesis are on pp. 1442-4. The biosynthesis of chrysanthemic acid requires only the first few steps of this sequence. The greatest simplification is that R in the squalene biosynthesis is now just a methyl group. The stereochemistry in the three-membered ring comes from the stereoselectivity of the enzyme-controlled ring closure reaction. Hydrolysis of the pyrophosphate and oxidation of the alcohol are needed to get the acid. [Pg.498]

Squalene is also an intermediate in the synthesis of cholesterol. StmcturaHy, chemically, and biogeneticaHy, many of the triterpenes have much in common with steroids (203). It has been verified experimentally that squalene is the precursor in the biosynthesis of all triterpenes through a series of cyclization and rearrangement reactions (203,204). Squalene is not used much in cosmetics and perfumery formulations because of its light, heat, and oxidative instabiUty however, its hydrogenated derivative, squalane, has a wide use as a fixative, a skin lubricant, and a carrier of Hpid-soluble dmgs. [Pg.431]

The most important oxirane, from an anthropocentric viewpoint, is probably squalene oxide (72), a precursor of lanosterol (73) and thus of the maligned but essential cholesterol (74 Scheme 87) 78MI50501). The cyclization of (72) to (73) represents nucleophilic tr-attack on oxirane carbon cf. Section 5.05.3.4.3(t)()), and the process has also been extensively investigated in vitro (68ACR1). Oxiranes are even more ubiquitous in steroid biosynthesis than had been thought, for a cholesterol epoxide has been shown to be a product of mammalian steroid biosynthesis <81JA6974). [Pg.119]

Processes of this kind are important in the biosynthesis of steroids and tetra- and pentacyclic terpenes. For example, squalene 2,3-oxide is converted by enzymatic catalysis to dammaradienol. [Pg.1019]

Polyene cyclizations are of substantial value in the synthesis of polycyclic terpene natural products. These syntheses resemble the processes by which the polycyclic compounds are assembled in nature. The most dramatic example of biosynthesis of a polycyclic skeleton from a polyene intermediate is the conversion of squalene oxide to the steroid lanosterol. In the biological reaction, an enzyme not only to induces the cationic cyclization but also holds the substrate in a conformation corresponding to stereochemistry of the polycyclic product.17 In this case, the cyclization is terminated by a series of rearrangements. [Pg.867]

FIGURE 1.4 Proposed biosynthetic route for the biosynthesis of (A) squalene oxide (squalene-2,3-oxide) via the isoprenoid pathway and (B) triterpene saponins of the dammarane-type and oleanane-type from squalene oxide. PP, diphosphate group GPS, geranyl phosphate synthase FPS, farnesyl phosphate synthase NADPH, nicotinamide adenine dinucleotide phosphate. [Pg.40]

NT325 Reid, W. W. Accumulation of squalens-2,3-oxide during inhibition of phytosterol biosynthesis in Nicotiana tabacum. Phytochemistry 1968 7(3) NT338... [Pg.357]

Most animal steroids arise from cholesterol, which in turn is derived from squalene. This C30 triterpene, whose biosynthesis is described in Section B, is named after the dogfish Squalus in whose liver it accumulates as a result of blockage in oxidation to cholesterol. Squalene is also a prominent constituent of human skin lipids. Its conversion to cholesterol, which takes place in most animal tissues,117/154-156 is initiated by a microsomal enzyme system that utilized 02 and NAD-PH to form squalene 2,3-oxide (Fig. 22-6, step a). [Pg.1244]

The two remaining reactions in the biosynthesis of lanosterol are shown in figure 20.9. In the first of these reactions, squalene-2,3-oxide is formed from squalene. As can be seen in figure 20.8, squalene is a symmetrical molecule, hence the formation of squalene oxide can be initiated from either end of the molecule. The oxide is converted into lanosterol. The reaction can be formulated as proceeding by means of a protonated intermediate that undergoes a concerted series of trans-1,2 shifts of methyl groups and hydride ions to produce lanosterol (see fig. 20.9). [Pg.464]

In the biogenesis of steroids, the enzyme-catalyzed polycyclization of squalene (225) produces the tetracyclic substance lanosterol (225) which is eventually converted into cholesterol (227) Eschenmoser, Stork, and their co-workers (80-82) have proposed that the squalene-1anosterol conversion can be rationalized on the basis of stereoelectronic effects. The stereochemical course of this biological cyclization (83, 84) can be illustrated by considering the transformation of squalene oxide (228) (an intermediate in the biosynthesis of cholesterol (83, 84)) into dammaradienol 229. This transfor-... [Pg.300]

The chemical defense of the intertidal limpet Collisella limatula collected from southern California has been identified to be a diketone—limatulone [15 7]( 115). A proposed biosynthesis of limatulone involves oxidation of two molecules of squalene to give keto aldehydes which then undergo aldol condensation to give 157. [Pg.26]

Steroid biosynthesis occurs by enzyme-catalyzed epoxidation of squalene to 3deld squalene oxide, followed by acid-catalyzed cyclization and an extraordinary cascade of nine sequential carbocation reactions to yield lanosterol (Figure 27.6). Lanosterol is then degraded by other enzymes to... [Pg.1138]

A major breakthrough was achieved in the elucidation of the biosynthesis of sterols. Strong evidence has been obtained showing that squalene 2,3-oxide is an intermediate in the conversion of squalene to cholesterol. ... [Pg.312]

There is little doubt that the pathway from acetyl-CoA to squalene 2,3-oxide in plants is the same as that in animals and as it is detailed in the chapter on cholesterol biosynthesis it will not be reiterated here. [Pg.175]

The next step in the biosynthesis of steroids features an unusual head-to-head coupling reaction of two famesol pyrophosphates (OPP, not shown in diagram) to afford the alicyclic triterpene squalene 3-1, a compound found in shark liver oil (Scheme 2.3). Note that this product is in fact symmetrical about the newly formed bond. The next reaction in the sequence, which has only recently been uncovered, comprises oxidation of the terminal double bond to an epoxide. Opening of the oxirane leads to a domino-like series of ring-closing reactions and also concomitant migration of methyl groups. This chain reaction can be, and in fact has been, duplicated in the laboratory in the absence of enzymes. This series of reactions leads to the hypothetical steroidal carbocation 3-2. [Pg.21]

The resolution of synthetic presqualene and prephytoene alcohols via their etienic acid derivatives has been reported. This work confirmed that the active (-f-)-enantiomers in both series have the same absolute configuration [(li , 2/ , 3/ )]. It has been established, by use of Hn.m.r., that the proton (deuteron) introduced at C-3 during the cyclization of squalene to tetrahymanol by Tetrahymena pyriformis has the 3/8 configuration. Both antipodes of the trimethyldecalol (13) have been shown to be effective inhibitors of cholesterol biosynthesis in rat liver enzyme preparations and cultured mammalian cells. The accumulation of squalene 2,3-oxide and squalene 2,3 22,23-dioxide in the treated systems indicates that inhibition occurs at the cyclization stage. The inhibitor is metabolized to the diol (14). The results of other sterol inhibition... [Pg.187]


See other pages where Squalene, biosynthesis oxide is mentioned: [Pg.39]    [Pg.69]    [Pg.646]    [Pg.641]    [Pg.16]    [Pg.38]    [Pg.45]    [Pg.295]    [Pg.151]    [Pg.583]    [Pg.163]    [Pg.382]    [Pg.990]    [Pg.204]    [Pg.905]    [Pg.105]    [Pg.96]    [Pg.416]   
See also in sourсe #XX -- [ Pg.1486 ]




SEARCH



Squalene 2,3-oxide

Squalenes

© 2024 chempedia.info