Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spherulites crystallization temperature

We can nucleate crystallization from the melt by incorporating finely ground inorganic crystalline compounds such as silica. Nucleation of injection molded nylons has three primary effects it raises the crystallization temperature, increases the crystallization rate, and reduces the average spherulite size. The net effect on morphology is increased crystallinity. This translates into improved abrasion resistance and hardness, at the expense of lower impact resistance and reduced elongation at break,... [Pg.367]

Figure 13 Top, plot of linear growth rates of polyfethylene adipate) spherulites as a function of crystallization temperature for indicated molecular weight fractions. Spherulites shown correspond to the indicated range of temperatures. (A) Crystallization at the lower temperature range (B) at intermediate temperatures (C) crystallization at high temperatures. Reproduced with permission from Ref. [216]. Copyright 1956,... Figure 13 Top, plot of linear growth rates of polyfethylene adipate) spherulites as a function of crystallization temperature for indicated molecular weight fractions. Spherulites shown correspond to the indicated range of temperatures. (A) Crystallization at the lower temperature range (B) at intermediate temperatures (C) crystallization at high temperatures. Reproduced with permission from Ref. [216]. Copyright 1956,...
Figure 15 Morphological map of linear polyethylene fractions. Plot of molecular weight against crystallization temperature. The types of supermolecular structures are represented by symbols. Patterns a, b and c represent spherulitic structures with deteriorating order from a to c. Patterns g and d represent rods or sheet-like structures whose breadth is comparable to their length g or display a different aspect ratio d. Pattern h represents randomly oriented lamellae. Neither h nor g patterns have azimuthal dependence of the scattering. Reproduced with permission from Ref. [223]. Copyright 1981 American Chemical Society. (See Ref. [223] for full details.) Note the pattern a is actually located as o in the figure this was an error on the original. Figure 15 Morphological map of linear polyethylene fractions. Plot of molecular weight against crystallization temperature. The types of supermolecular structures are represented by symbols. Patterns a, b and c represent spherulitic structures with deteriorating order from a to c. Patterns g and d represent rods or sheet-like structures whose breadth is comparable to their length g or display a different aspect ratio d. Pattern h represents randomly oriented lamellae. Neither h nor g patterns have azimuthal dependence of the scattering. Reproduced with permission from Ref. [223]. Copyright 1981 American Chemical Society. (See Ref. [223] for full details.) Note the pattern a is actually located as o in the figure this was an error on the original.
Ueda et al. [26] recently investigated a flow-oriented PE-fr-aPP diblock copolymer with Mw = 113 000 (Mn/Mw = 1.1) and a PE volume fraction of 0.48. This diblock copolymer is in the strong segregation regime (i.e., estimated xN = 10.5 and Todt = 290 °C) and has a lamellar morphology in the melt. They found a breakout phenomenon with the formation of spherulites in an intermediate crystallization temperature range 95 < Tc < 101 °C. At crystallization temperatures above 101 °C or below 95 °C spherulites were not formed and the crystallization was confined within the lamellar MD. Ueda et al. report that lamellar MD and spherulites do not co-exist when the material crystallizes from the melt which is separated in lamellar MDs. In other words, in this particular case, breakout or confined crystallization within lamellar MDs depends on the crystallization conditions. [Pg.60]

The use of nucleating agents in PET is not only intended for increasing the rate of crystallization and the crystallization temperature but also for forming a more homogeneous morphology, that is, a more uniform spherulite distribution. [Pg.518]

The structure of crystalline polymers may be significantly modified by the introduction of fillers. All aspects of the structure change on filling, crystallite and spherulite size, as well as crystallinity, are altered as an effect of nucleation [9]. A typical example is the extremely strong nucleation effect of talc in polypropylene [10,11], which is demonstrated also in Fig. 2. Nucleating effect is characterized by the peak temperature of crystallization, which increases significantly on the addition of the filler. Elastomer modified PP blends are shown as a comparison crystallization temperature decreases in this case. Talc also nucleates polyamides. Increasing crystallization temperature leads to an increase in lamella thickness and crystallinity, while the size of the spherulites decreases on... [Pg.113]

Figure 5.16 Images of a polymer spherulite plotted as in Fig. 5.15 except the material experienced faster quenching to below the crystallization temperature. Reproduced from figure 2 of Ref. 31, with permission. Figure 5.16 Images of a polymer spherulite plotted as in Fig. 5.15 except the material experienced faster quenching to below the crystallization temperature. Reproduced from figure 2 of Ref. 31, with permission.
When a polymer crystallizes from the melt without disturbance, it normally forms spherical structures that are called spherulites [1,2]. The dimensions of spherulites range from micrometers to millimeters, depending on the structure of the polymer chain and the crystallization conditions, such as cooling rate, crystallization temperature, and the content of the nucleating agent. The structure of spherulites is similar regardless of their size they are aggregates of crystallites [1-6]. [Pg.2]

In conclusion, the deformation behavior of poly(hexamethylene sebacate), HMS, can be altered from ductile to brittle by variation of crystallization conditions without significant variation of percent crystallinity. Banded and nonbanded spherulitic morphology samples crystallized at 52°C and 60°C fail at a strain of 0.01 in./in. whereas ice-water-quenched HMS does not fail at a strain of 1.40 in./in. The change in deformation behavior is attributed primarily to an increased population of tie molecules and/or tie fibrils with decreasing crystallization temperature which is related to variation of lamellar and spherulitic dimensions. This ductile-brittle transformation is not caused by volume or enthalpy relaxation as reported for glassy amorphous polymers. Nor is a series of molecular weights, temperatures, strain rates, etc. required to observe this transition. Also, the quenched HMS is transformed from the normal creamy white opaque appearance of HMS to a translucent appearance after deformation. [Pg.126]

Figure 20.3 Spherulite growth rate (G) for sPS/PPE and sPS/PVME blends as a function of the crystallization temperature Tci ( ) sPS ( ) sPS/PPE 90 10 ( ) sPS/ PPE 80 20 (A) sPS/PVME 80 20 ( ) sPS/PVME 70 30 ( ) sPS/PVME 50 50. Reprinted from Polymer, vol. 34, Cimmino S., Di Pace E., Martuscelli E., Silvestre C., sPS based blends crystallization and phase structure , p. 2799, Copyright 1993, with permission from Elsevier Science. Figure 20.3 Spherulite growth rate (G) for sPS/PPE and sPS/PVME blends as a function of the crystallization temperature Tci ( ) sPS ( ) sPS/PPE 90 10 ( ) sPS/ PPE 80 20 (A) sPS/PVME 80 20 ( ) sPS/PVME 70 30 ( ) sPS/PVME 50 50. Reprinted from Polymer, vol. 34, Cimmino S., Di Pace E., Martuscelli E., Silvestre C., sPS based blends crystallization and phase structure , p. 2799, Copyright 1993, with permission from Elsevier Science.
It should be pointed out that there is no direct physical relation between the phenomenon of fractionated crystallization and the number and the size of spherulites in the pure polymer. Whereas the occurrence of fractionated crystallization is related to the ratio between the number densities of dispersed polymer particles and primary nuclei, the size and the number of spherulites are additionally influenced by the cooling rate and the crystallization temperature. There is, therefore, also no relation between the fractionated crystallization and the type of the arising crystalline entities (complete spherulites, stacks of lamellae,...) both in the pure and in the blended material. There is, finally, no relation between the scale of dispersion which is necessary for the occurrence of fractionated crystallization and the spherulite size in the unblended polymer. [Pg.107]


See other pages where Spherulites crystallization temperature is mentioned: [Pg.369]    [Pg.275]    [Pg.278]    [Pg.283]    [Pg.185]    [Pg.187]    [Pg.188]    [Pg.225]    [Pg.227]    [Pg.101]    [Pg.44]    [Pg.58]    [Pg.688]    [Pg.208]    [Pg.7]    [Pg.185]    [Pg.305]    [Pg.317]    [Pg.31]    [Pg.45]    [Pg.184]    [Pg.432]    [Pg.188]    [Pg.190]    [Pg.191]    [Pg.228]    [Pg.230]    [Pg.472]    [Pg.474]    [Pg.21]    [Pg.57]    [Pg.125]    [Pg.392]    [Pg.385]    [Pg.41]    [Pg.45]    [Pg.94]    [Pg.134]    [Pg.104]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Crystal spherulites

Crystallization temperature

Spherulite

Spherulites

Spherulitic

© 2024 chempedia.info