Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral trajectory

Spectral trajectories contain much information about the stochastic behavior of the single molecule. If a simple measure of the average time scale of spectral shifts is required, it is useful to calculate the autocorrelation of the spectral trajectory, C[Pg.22]

Figure Cl.5.8. Spectral jumping of a single molecule of terrylene in polyethylene at 1.5 K. The upper trace displays fluorescence excitation spectra of tire same single molecule taken over two different 20 s time intervals, showing tire same molecule absorbing at two distinctly different frequencies. The lower panel plots tire peak frequency in tire fluorescence excitation spectmm as a function of time over a 40 min trajectory. The molecule undergoes discrete jumps among four (briefly five) different resonant frequencies during tliis time period. Arrows represent scans during which tire molecule had jumped entirely outside tire 10 GHz scan window. Adapted from... Figure Cl.5.8. Spectral jumping of a single molecule of terrylene in polyethylene at 1.5 K. The upper trace displays fluorescence excitation spectra of tire same single molecule taken over two different 20 s time intervals, showing tire same molecule absorbing at two distinctly different frequencies. The lower panel plots tire peak frequency in tire fluorescence excitation spectmm as a function of time over a 40 min trajectory. The molecule undergoes discrete jumps among four (briefly five) different resonant frequencies during tliis time period. Arrows represent scans during which tire molecule had jumped entirely outside tire 10 GHz scan window. Adapted from...
This discussion suggests that even the reference trajectories used by symplectic integrators such as Verlet may not be sufficiently accurate in this more rigorous sense. They are quite reasonable, however, if one requires, for example, that trajectories capture the spectral densities associated with the fastest motions in accord to the governing model [13, 15]. Furthermore, other approaches, including nonsymplectic integrators and trajectories based on stochastic differential equations, can also be suitable in this case when carefully formulated. [Pg.232]

Another view of this theme was our analysis of spectral densities. A comparison of LN spectral densities, as computed for BPTI and lysozyme from cosine Fourier transforms of the velocity autocorrelation functions, revealed excellent agreement between LN and the explicit Langevin trajectories (see Fig, 5 in [88]). Here we only compare the spectral densities for different 7 Fig. 8 shows that the Langevin patterns become closer to the Verlet densities (7 = 0) as 7 in the Langevin integrator (be it BBK or LN) is decreased. [Pg.255]

We seek the poles of the spectral function g(E) given by (3.7). In the WKB approximation the path integral in (3.7) is dominated by the classical trajectories which give an extremum to the action functional... [Pg.42]

Mass spectrometers, workhorse instmments described in Chapter 2, require a vacuum to function. A mass spectrometer generates a beam of ions that is sorted according to specifications of the particular instrument. Usually, the sorting depends on differences in speed, trajectory, and mass. For instance, one type of mass spectrometer measures how long it takes ions to travel from one end of a tube to another. Residual gas must be removed from the tube to eliminate collisions between gas molecules and the ions that are being analyzed. As the diagram shows, collisions with unwanted gas molecules deflect the ions from their paths and change the expected mass spectral pattern. [Pg.308]

An example of CQV of the batch cultivation of a vaccine has been demonstrated, where univariate (temperature, dissolved oxygen, pH) as well as spectroscopic tools were used to develop process models. The measurements were used for a consistency analysis of the batch process, providing better process understanding which includes the understanding of the variations in the data. MSPC analysis of four batches of data was performed to monitor the batch trajectories, and indicated that one batch had a deviation in the pH. From the MSPC information, combined with calibration models for the composition of the process based on NIR spectral data, improved monitoring and control systems can be developed for the process, consistent with concept of CQV. The data from the univariate sensors and NIR were also fused for a global analysis of the process with a model comprised of all the measurements. [Pg.539]

Modern missiles employ counter-counter measures. Their advanced seeker heads use two or more spectral bands in an attempt to distinguish between the flare and the target. Trajectory discrimination may also be used by some seeker heads. The physical size of the heat source is more important as imaging seekers that can discriminate a spot target of IR flares, have been developed. Depending on their application, IR decoy flares can be further classified into ... [Pg.351]

For a same molecular ratio of aqueous NaY solutions (Y = OH, Cl), experimental data underlines specific effects of nascent OH radicals on transient UV and near-IR electronic configurations. Complex investigations of PHET reactions in the polarization CTTS well of aqueous CT and OH ions are in progress. We should wonder whether a change in the size of ionic radius (OH -1.76 A vs Cl" 2.35 A) or in the separation of the energy levels influence early branchings of ultrafast electronic trajectories. A key point of these studies is that the spectroscopic predictions of computed model-dependent analysis are compared to a direct identification of transient spectral bands, using a cooled Optical Multichannel Analyzer... [Pg.235]

Model correlation functions. Certain model correlation functions have been found that model the intracollisional process fairly closely. These satisfy a number of physical and mathematical requirements and their Fourier transforms provide a simple analytical model of the spectral profile. The model functions depend on the choice of two or three parameters which may be related to the physics (i.e., the spectral moments) of the system. Sears [363, 362] expanded the classical correlation function as a series in powers of time squared, assuming an exponential overlap-induced dipole moment as in Eq. 4.1. The series was truncated at the second term and the parameters of the dipole model were related to the spectral moments [79]. The spectral model profile was obtained by Fourier transform. Levine and Birnbaum [232] developed a classical line shape, assuming straight trajectories and a Gaussian dipole function. The model was successful in reproducing measured He-Ar [232] and other [189, 245] spectra. Moreover, the quantum effect associated with the straight path approximation could also be estimated. We will be interested in such three-parameter model correlation functions below whose Fourier transforms fit measured spectra and the computed quantum profiles closely see Section 5.10. Intracollisional model correlation functions were discussed by Birnbaum et a/., (1982). [Pg.234]


See other pages where Spectral trajectory is mentioned: [Pg.32]    [Pg.34]    [Pg.20]    [Pg.21]    [Pg.22]    [Pg.138]    [Pg.272]    [Pg.32]    [Pg.34]    [Pg.20]    [Pg.21]    [Pg.22]    [Pg.138]    [Pg.272]    [Pg.69]    [Pg.3060]    [Pg.52]    [Pg.154]    [Pg.55]    [Pg.218]    [Pg.145]    [Pg.341]    [Pg.176]    [Pg.350]    [Pg.279]    [Pg.123]    [Pg.624]    [Pg.81]    [Pg.624]    [Pg.178]    [Pg.333]    [Pg.378]    [Pg.469]    [Pg.81]    [Pg.341]    [Pg.199]    [Pg.209]    [Pg.210]    [Pg.490]    [Pg.494]    [Pg.75]    [Pg.79]   
See also in sourсe #XX -- [ Pg.34 ]

See also in sourсe #XX -- [ Pg.20 , Pg.117 , Pg.120 , Pg.124 , Pg.144 , Pg.152 , Pg.155 ]




SEARCH



© 2024 chempedia.info