Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectra transfer

Therefore, this simple calculation allows us to approximate the operation in the microscope to the ideal conditions, but this does not eliminate the need for taking through focus series of micrographs, including the amorphous edge detail that will help in the determination of the optical diffractogram power spectrum transferred by the lens, as the more practical and direct method for obtaining HREM information [7, 8]. [Pg.68]

The detectability of critical defects with CT depends on the final image quality and the skill of the operator, see figure 2. The basic concepts of image quality are resolution, contrast, and noise. Image quality are generally described by the signal-to-noise ratio SNR), the modulation transfer function (MTF) and the noise power spectrum (NFS). SNR is the quotient of a signal and its variance, MTF describes the contrast as a function of spatial frequency and NFS in turn describes the noise power at various spatial frequencies [1, 3]. [Pg.209]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

Muns ENDOR mvolves observation of the stimulated echo intensity as a fimction of the frequency of an RE Ti-pulse applied between tlie second and third MW pulse. In contrast to the Davies ENDOR experiment, the Mims-ENDOR sequence does not require selective MW pulses. For a detailed description of the polarization transfer in a Mims-type experiment the reader is referred to the literature [43]. Just as with three-pulse ESEEM, blind spots can occur in ENDOR spectra measured using Muns method. To avoid the possibility of missing lines it is therefore essential to repeat the experiment with different values of the pulse spacing Detection of the echo intensity as a fimction of the RE frequency and x yields a real two-dimensional experiment. An FT of the x-domain will yield cross-peaks in the 2D-FT-ENDOR spectrum which correlate different ENDOR transitions belonging to the same nucleus. One advantage of Mims ENDOR over Davies ENDOR is its larger echo intensity because more spins due to the nonselective excitation are involved in the fomiation of the echo. [Pg.1581]

The radical cation of 1 (T ) is produced by a photo-induced electron transfer reaction with an excited electron acceptor, chloranil. The major product observed in the CIDNP spectrum is the regenerated electron donor, 1. The parameters for Kaptein s net effect rule in this case are that the RP is from a triplet precursor (p. is +), the recombination product is that which is under consideration (e is +) and Ag is negative. This leaves the sign of the hyperfine coupling constant as the only unknown in the expression for the polarization phase. Roth et aJ [10] used the phase and intensity of each signal to detemiine the relative signs and magnitudes of the... [Pg.1601]

Charge-transfer absorption is important because it produces very large absorbances, providing for a much more sensitive analytical method. One important example of a charge-transfer complex is that of o-phenanthroline with Fe +, the UV/Vis spectrum for which is shown in Figure 10.17. Charge-transfer absorption in which the electron moves from the ligand to the metal also is possible. [Pg.382]

Kovat s retention index (p. 575) liquid-solid adsorption chromatography (p. 590) longitudinal diffusion (p. 560) loop injector (p. 584) mass spectrum (p. 571) mass transfer (p. 561) micellar electrokinetic capillary chromatography (p. 606) micelle (p. 606) mobile phase (p. 546) normal-phase chromatography (p. 580) on-column injection (p. 568) open tubular column (p. 564) packed column (p. 564) peak capacity (p. 554)... [Pg.609]

If the substrate (M) is more basic than NHj, then proton transfer occurs, but if it is less basic, then addition of NH4 occurs. Sometimes the basicity of M is such that both reactions occur, and the mass spectrum contains ions corresponding to both [M + H]+ and [M + NH4]. Sometimes the reagent gas ions can form quasi-molecular ions in which a proton has been removed from, rather than added to, the molecule (M), as shown in Figure 1.5c. In these cases, the quasi-molecular ions have one mass unit less than the true molecular mass. [Pg.4]

If the liquid that is being bombarded contains ions, then some of these will be ejected from the liquid and can be measured by the mass spectrometer. This is an important but not the only means by which ions appear in a FAB or LSIMS spectrum. Momentum transfer of preformed ions in solution can be used to enhance ion yield, as by addition of acid to an amine to give an ammonium species (Figure 4.3). [Pg.19]

A dye molecule has one or more absorption bands in the visible region of the electromagnetic spectrum (approximately 350-700 nm). After absorbing photons, the electronically excited molecules transfer to a more stable (triplet) state, which eventually emits photons (fluoresces) at a longer wavelength (composing three-level system.) The delay allows an inverted population to build up. Sometimes there are more than three levels. For example, the europium complex (Figure 18.15) has a four-level system. [Pg.132]

E mass spectrum. Processes of the partial charge-transfer type ... [Pg.435]

The volumetric coefficient h a from the combination of Eqs. (14-178) and (14-179) is useful in defining the effect of variable changes but is limited in value because of its dependence on D. The prodiicl of area and coefficient obtained from a given mass of hqiiid is proportional to (1/D ) for small diameters. The prime problem is that droplet-size estimating procedures are often no better than 50 percent. A secondary problem is that there is no that truly characterizes either the motion or transfer process for the whole spectrum of particle sizes present. See Eqs. (14-193) and (14-194). [Pg.1402]

Although not discussed in detail here, the normal mode analysis method has been used to calculate the electron transfer reorganization spectrum in / M-modified cytochrome c [65,66]. In this application the normal mode analysis fits comfortably into the theory of electron transfer. [Pg.165]


See other pages where Spectra transfer is mentioned: [Pg.11]    [Pg.120]    [Pg.600]    [Pg.242]    [Pg.206]    [Pg.124]    [Pg.89]    [Pg.240]    [Pg.209]    [Pg.74]    [Pg.973]    [Pg.1174]    [Pg.1318]    [Pg.1318]    [Pg.1320]    [Pg.1323]    [Pg.1323]    [Pg.1503]    [Pg.1509]    [Pg.1510]    [Pg.2098]    [Pg.2108]    [Pg.3018]    [Pg.60]    [Pg.305]    [Pg.449]    [Pg.450]    [Pg.180]    [Pg.368]    [Pg.372]    [Pg.20]    [Pg.33]    [Pg.313]    [Pg.159]    [Pg.259]    [Pg.12]    [Pg.571]    [Pg.477]    [Pg.478]   


SEARCH



© 2024 chempedia.info