Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectra fine structure

Histone-H, protamine, poly-L-arginine, all give rise to very similar spectra. Fine structure resolved only after enzymatic digestion of spin adduct. ... [Pg.46]

Thus, with allowance for both the first-order and second-order processes, the secondary electron spectrum fine structure is formed by oscillations of two types, which are determined by the same local atomic structure but different wave numbers this is the main difference of SEFS spectra from EXAFS and EELFS spectra. It is just this qualitative difference that must determine the characteristic features of SEFS spectra, and it must be taken into account in obtaining parameters of the local atomic structure from experimental data. However, it should be pointed out that a signal from two final states can be observed also in EXAFS and EELFS spectra in the case of the excitation of two closely spaced levels. And though the mechanism of appearance of these signals differs from that in the case of SEFS, nevertheless conceivably the analogous problem must be solved also for these traditional methods. [Pg.199]

The oscillating part of the secondary electron spectrum fine structure in the expression obtained is determined by two interference terms resulting from scattering of secondary electrorrs of final and intermediate states (the latter are due to the second-order process only). Here intensities of oscillating terms are determined by the amplitudes and intensities of electron transitions in the atom ionized. In this section we make estimations of these values within the framework of the simple hydrogen like model using the atomic unit system as in the preceding section. This section s content is based on papers [20,22,29-31,33,35,37,45-47]. [Pg.222]

It is possible to understand the fine structure in the reflectivity spectrum by examining the contributions to the imaginary part of the dielectric fiinction. If one considers transitions from two bands (v c), equation A1.3.87 can be written as... [Pg.119]

Figure B2.5.12 shows the energy-level scheme of the fine structure and hyperfme structure levels of iodine. The corresponding absorption spectrum shows six sharp hyperfme structure transitions. The experimental resolution is sufficient to detennine the Doppler line shape associated with the velocity distribution of the I atoms produced in the reaction. In this way, one can detennine either the temperature in an oven—as shown in Figure B2.5.12 —or the primary translational energy distribution of I atoms produced in photolysis, equation B2.5.35. Figure B2.5.12 shows the energy-level scheme of the fine structure and hyperfme structure levels of iodine. The corresponding absorption spectrum shows six sharp hyperfme structure transitions. The experimental resolution is sufficient to detennine the Doppler line shape associated with the velocity distribution of the I atoms produced in the reaction. In this way, one can detennine either the temperature in an oven—as shown in Figure B2.5.12 —or the primary translational energy distribution of I atoms produced in photolysis, equation B2.5.35.
For the variational calculations of the vibronic spectrum and the spin-orbit fine structure in the X H state of HCCS the basis sets involving the bending functions up to 0i = 02 = 11 with all possible and I2 values are used. This leads to the vibronic secular equations with dimensions 600 for each of the vibronic species considered. The bases of such dimensions ensure full... [Pg.529]

The distinction between in-plane A symmetry) and out-of-plane (A" symmetry) vibrations resulted from the study of the polarization of the diffusion lines and of the rotational fine structure of the vibration-rotation bands in the infrared spectrum of thiazole vapor. [Pg.54]

The hydrogen atom and one-electron ions are the simplest systems in the sense that, having only one electron, there are no inter-electron repulsions. However, this unique property leads to degeneracies, or near-degeneracies, which are absent in all other atoms and ions. The result is that the spectrum of the hydrogen atom, although very simple in its coarse structure (Figure 1.1) is more unusual in its fine structure than those of polyelectronic atoms. For this reason we shall defer a discussion of its spectrum to the next section. [Pg.213]

A — P transition, shown in Figure 7.10(b), has six components. As with doublet states the multiplet splitting decreases rapidly with L so the resulting six lines in the spectrum appear, at medium resolution, as a triplet. For this reason the fine structure is often called a compound triplet. [Pg.222]

The UV spectrum of a complex conjugated molecule is usually observed to consist of a few broad band systems, often with fine structure, which may be sharpened up in non-polar solvents. Such a spectrum can often be shown to be more complex than it superficially appears, by investigation of the magnetic circular dichroism (MCD) spectrum, or by introduction of dissymmetry and running the optical rotatory dispersion (ORD) or circular dichroism (CD) spectrum. These techniques will frequently separate and distinguish overlapping bands of different symmetry properties <71PMH(3)397). [Pg.20]

Interatomic distances calculated from the detailed analysis of rotational fine structure of the UV spectrum of pyrazine are in close agreement with those observed in (7) and (8), with the calculated bond lengths for C—C of 1.395, C—N 1.341 and C—H 1.085 A (60DIS(20)4291). Thermochemical data have provided a figure of 75 kJ moP for the delocalization energy of the pyrazine ring (B-67MI21400). [Pg.158]

EXAFS is part of the field of X-ray absorption spectroscopy (XAS), in which a number of acronyms abound. An X-ray absorption spectrum contains EXAFS data as well as the X-ray absorption near-edge structure, XANES (alternatively called the near-edge X-ray absorption fine structure, NEXAFS). The combination of XANES (NEXAFS) and EXAFS is commonly referred to as X-ray absorption fine structure, or XAFS. In applications of EXAFS to surface science, the acronym SEXAFS, for surface-EXAFS, is used. The principles and analysis of EXAFS and SEXAFS are the same. See the article following this one for a discussion of SEXAFS and NEXAFS. [Pg.215]

Figure 2 Molybdenum K-edge X-ray absorption spectrum, ln(i /i ) versus X-ray energy (eV), for molybdenum metal foil (25- jjn thick), obtained by transmission at 77 K with synchrotron radiation. The energy-dependent constructive and destructive interference of outgoing and backscattered photoelectrons at molybdenum produces the EXAFS peaks and valleys, respectively. The preedge and edge structures marked here are known together as X-ray absorption near edge structure, XANES and EXAFS are provided in a new compilation of literature entitled X-rsy Absorption Fine Structure (S.S. Hasain, ed.) Ellis Norwood, New York, 1991. Figure 2 Molybdenum K-edge X-ray absorption spectrum, ln(i /i ) versus X-ray energy (eV), for molybdenum metal foil (25- jjn thick), obtained by transmission at 77 K with synchrotron radiation. The energy-dependent constructive and destructive interference of outgoing and backscattered photoelectrons at molybdenum produces the EXAFS peaks and valleys, respectively. The preedge and edge structures marked here are known together as X-ray absorption near edge structure, XANES and EXAFS are provided in a new compilation of literature entitled X-rsy Absorption Fine Structure (S.S. Hasain, ed.) Ellis Norwood, New York, 1991.
The spectrum of Figure lb is a fingerprint of the presence of a CO molecule, since it is different in detail from that of any other molecule. UPS can therefore be used to identify molecules, either in the gas phase or present at surfaces, provided a data bank of molecular spectra is available, and provided that the spectral features are sufficiently well resolved to distinguish between molecules. By now the gas phase spectra of most molecules have been recorded and can be found in the literature. Since one is using a pattern of peaks spread over only a few eV for identification purposes, mixtures of molecules present will produce overlapping patterns. How well mixtures can be analyzed depends, obviously, on how well overlapping peaks can be resolved. For molecules with well-resolved fine structure (vibrational) in the spectra (see Figure lb), this can be done much more successfiilly than for the broad. [Pg.302]

W. E. Lamb (Stanford) the fine structure of the hydrogen spectrum. [Pg.1302]

Another use for this solvent is exemplified by 1,4,5,8-tetraazanaph-thalene, the anhydrous species of which has a predicted i Ka value of — 2.7 (the observed pA in water is + 2.51). The spectrum obtained in anhydrous dichloroacetic acid is almost identical with that of the predominantly anhydrous neutral species determined in water, but quite different from the spectrum measured in dilute aqueous acid. Moreover, addition of water to the anhydrous dichloroacetic acid solution of this base caused the fine structure present in the spectrum of the neutral species to disappear and the band due to the hydrated cation (i.e. the spectrum obtained in water at pH 0.5) to appear. Addition of water to dichloroacetic acid solutions has been used to show that the cations of 3- and 8-nitro-l,6-naphthyridine20 are hydrated in aqueous acid at pH 0.5. [Pg.12]

Extended X-ray absorption fine structure (EXAFS) measurements based on the photoeffect caused by collision of an inner shell electron with an X-ray photon of sufficient energy may also be used. The spectrum, starting from the absorption edge, exhibits a sinusoidal fine structure caused by interferences between the outgoing and the backscattered waves of the photoelectron which is the product of the collision. Since the intensity of the backscattering decreases rapidly over the distances to the next neighbor atoms, information about the chemical surroundings of the excited atom can be deduced. [Pg.550]

The photoelectron spectrum of nitrogen (N2) has several peaks, a pattern indicating that electrons can be found in several energy levels in the molecule. Each main group of lines corresponds to the energy of a molecular orbital. The additional "fine structure" on some of the groups of lines is due to the excitation of molecular vibration when an electron is expelled. [Pg.243]

The fine structure of the spectrum is the splitting of the resonance into sharp peaks. Note that the methyl resonance in ethanol at 8 = 1 consists of three peaks with intensities in the ratio 1 2 1. The fine structure arises from the presence of other magnetic nuclei close to the protons undergoing resonance. The fine structure of the methyl group in ethanol, for instance, arises from the presence of the protons in the neighboring methylene group. [Pg.905]

This simplified treatment does not account for the fine-structure of the hydrogen spectrum. It has been shown by Dirac (22) that the assumption that the system conform to the principles of the quantum mechanics and of the theory of relativity leads to results which are to a first approximation equivalent to attributing to each electron a spin that is, a mechanical moment and a magnetic moment, and to assuming that the spin vector can take either one of two possible orientations in space. The existence of this spin of the electron had been previously deduced by Uhlenbeck and Goudsmit (23) from the empirical study of line spectra. This result is of particular importance for the problems of chemistry. [Pg.32]

Vibrational fine structure was resolved for n=l-3 and 6 [88]. In particular, the observed frequencies allow the identification of both ring and chain isomers of 85 and 87 . It is of interest to note that the only wavenumber measured for the neutral 8e structure (570 32 cm ) is significantly higher than both the calculated and observed Raman wavenumbers of the D3d isomer of 8e and falls in a pronounced gap of the spectrum of this isomer. [Pg.17]


See other pages where Spectra fine structure is mentioned: [Pg.307]    [Pg.175]    [Pg.248]    [Pg.217]    [Pg.267]    [Pg.282]    [Pg.4]    [Pg.24]    [Pg.802]    [Pg.804]    [Pg.1792]    [Pg.578]    [Pg.484]    [Pg.488]    [Pg.17]    [Pg.402]    [Pg.5]    [Pg.36]    [Pg.196]    [Pg.18]    [Pg.143]    [Pg.196]    [Pg.47]    [Pg.56]    [Pg.63]    [Pg.36]    [Pg.242]    [Pg.63]    [Pg.902]    [Pg.1027]    [Pg.84]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Accounting for the fine structure in a spectrum

ECD Spectra Computed with Vibrational Fine Structure

EXAFS spectra absorption fine structure spectroscopy

Electron fine-structure spectrum

Extended x-ray absorption fine structure EXAFS) spectra

Fine spectrum

Fine structure

Fine-structured spectra

Hydrogen spectrum, fine structure

NEXAFS fine-structure spectra

Near-edge X-ray absorption fine-structure spectra

Rotational Fine Structure in Electronic Band Spectra

Spectra structure

X-ray absorption fine structure spectra

© 2024 chempedia.info