Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent swelling, polymers

The activity of polymer-supported crown ethers depends on solvent. As shown in Fig. 11, rates for Br-I exchange reactions with catalysts 34 and 41 increased with a change in solvent from toluene to chlorobenzene. Since the reaction with catalyst 34 is limited substantially by intrinsic reactivity (Fig. 10), the rate increase must be due to an increase in intrinsic reactivity. The reaction with catalyst 41 is limited by both intrinsic reactivity and intraparticle diffusion (Fig. 10), and the rate increase from toluene to chlorobenzene corresponds with increases in both parameters. Solvent effects on rates with polymer-supported phase transfer catalysts differ from those with soluble phase transfer catalysts60. With the soluble catalysts rates increase (for a limited number of reactions) with decreased polarity of solvent60), while with the polymeric catalysts rates increase with increased polarity of solvent74). Solvents swell polymer-supported catalysts and influence the microenvironment of active sites as well as intraparticle diffusion. The microenvironment, especially hydration... [Pg.88]

Acetal homopolymer resins show outstanding resistance to organic solvents, no effective solvent having yet been found for temperatures below 70°C. Above this temperature some phenolic materials such as the chlorophenols are effective. Stress cracking has not been encountered in organic solvents. Swelling occurs with solvents of similar solubility parameter to that of the polymer (8 = 22.4 MPa ). [Pg.540]

Cyanoacrylate adhesives cure by anionic polymerization. This reaction is catalyzed by weak bases (such as water), so the adhesives are generally stabilized by the inclusion of a weak acid in the formulation. While adhesion of cyanoacrylates to bare metals and many polymers is excellent, bonding to polyolefins requires a surface modifying primer. Solutions of chlorinated polyolefin oligomers, fran-sition metal complexes, and organic bases such as tertiary amines can greatly enhance cyanoacrylate adhesion to these surfaces [72]. The solvent is a critical component of these primers, as solvent swelling of the surface facilitates inter-... [Pg.460]

Fig. 1. Solvent swelling experiments with ECA polymers crosslinked with 7. Fig. 1. Solvent swelling experiments with ECA polymers crosslinked with 7.
Solvent swelling experiments, with CH2CI2 and ECA polymer crosslinked with 7, demonstrate that the addition of a difunctional cyanoacrylate monomer does improve solvent resistance [6], shown in Fig. 1. [Pg.852]

According to Flory-Huggins theory, in the limit of x the critical x parameter is 0.5.(H) Below this value the polymer and solvent will be miscible in all proportions. Above this value, the solvent will not dissolve the polymer, but will act only as a swelling solvent. Thus, the pure solvent may not dissolve the polymer even though it is not crosslinked. If x is not , the critical value of x is larger, but the same qualitative arguments regarding mutual solubility of the solvent and polymer hold. Thus, the application of Equation 1 does not require that the pure solvent be able to completely dissolve the polymer, only that the solvent dissolve into the polymer by an amount that can be measured. [Pg.138]

The effect of polymer-filler interaction on solvent swelling and dynamic mechanical properties of the sol-gel-derived acrylic rubber (ACM)/silica, epoxi-dized natural rubber (ENR)/silica, and polyvinyl alcohol (PVA)/silica hybrid nanocomposites was described by Bandyopadhyay et al. [27]. Theoretical delineation of the reinforcing mechanism of polymer-layered silicate nanocomposites has been attempted by some authors while studying the micromechanics of the intercalated or exfoliated PNCs [28-31]. Wu et al. [32] verified the modulus reinforcement of rubber/clay nanocomposites using composite theories based on Guth, Halpin-Tsai, and the modified Halpin-Tsai equations. On introduction of a modulus reduction factor (MRF) for the platelet-like fillers, the predicted moduli were found to be closer to the experimental measurements. [Pg.7]

Perhaps, unsurprisingly, the effects of polymer matrix on the reaction rate are probably at least as complex as solvent effects in solution-phase reactions, and broad generalizations about the characteristics of any given support in a series of different reactions are inappropriate. Reaction rates on supports depend on solvent swelling, selective adsorption, hydrogen bonding, hydrophobicity, and polarity. No single polymer support is best for all reactions. [Pg.233]

The first quantitative theory of the reentrant collapse was developed in Ref. [49], The theory explained the phenomenon of the simple reentrant collapse which was observed in Refs. [14, 41]. A more general theory of swelling and collapse of charged networks in the binary solvent was developed in Ref. [31] and described in Sect. 2.4.1. We have seen that one of the most essential features of the swelling behavior in mixed solvents is a redistribution of solvent molecules within the network giving a different solvent composition in the gel and the external solution. This redistribution is more pronounced for the collapsed gel, because the probability of contacts of the molecules of the solvent with polymer links in the collapsed gel is higher than in the swollen gel. [Pg.160]

In order to overcome the main limitations of the impregnation processes, connected to the limited solubility of the compounds in the supercritical fluids, Perman [68] proposed an alternative method. A supercritical impregnation process was coupled with a liquid solvent (preferentially water) to enhance the drug solubilization. The system composed of a liquid drug solution and the polymeric support was pressurized with the supercritical fluid. Consequently, the swelled polymer allows rapid diffusional transport of the solute into the polymeric substrate. In different examples, bovine serum albumin microspheres were impregnated with insulin, trypsin and gentamicin (see Table 9.9-5). [Pg.622]


See other pages where Solvent swelling, polymers is mentioned: [Pg.182]    [Pg.182]    [Pg.359]    [Pg.189]    [Pg.527]    [Pg.127]    [Pg.60]    [Pg.295]    [Pg.489]    [Pg.490]    [Pg.365]    [Pg.431]    [Pg.381]    [Pg.204]    [Pg.583]    [Pg.595]    [Pg.57]    [Pg.68]    [Pg.109]    [Pg.512]    [Pg.522]    [Pg.72]    [Pg.91]    [Pg.189]    [Pg.299]    [Pg.309]    [Pg.309]    [Pg.334]    [Pg.1]    [Pg.107]    [Pg.191]    [Pg.137]    [Pg.732]    [Pg.762]    [Pg.31]    [Pg.454]    [Pg.144]    [Pg.54]    [Pg.250]    [Pg.121]    [Pg.325]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Polymer swelling

Swelling solvents

© 2024 chempedia.info