Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects reactions between

DMSO and /V, A- dime th y I fo nn a in i d c (DMF) are particularly effective in enhancing the reactivity of enolate ions, as Table 1.2 shows. Both of these compounds belong to the polar aprotic class of solvents. Other members of this class that are used as solvents in reactions between carbanions and alkyl halides include N-mcthyI pyrro I i donc (NMP) and hexamethylphosphoric triamide (HMPA). Polar aprotic solvents, as their name implies, are materials which have high dielectric constants but which lack hydroxyl groups or other... [Pg.21]

Figure 7.10 Potential energy profile showing the effect of the solvent for reaction between uncharged reactants— charge-separated activated complex... Figure 7.10 Potential energy profile showing the effect of the solvent for reaction between uncharged reactants— charge-separated activated complex...
The reactions of [Co(CN)s(H20)]2 with Nf6768 and SCN-68 have been reinvestigated and important differences found which indicate that the evidence in favour of limiting kinetics is not as clear as originally supposed. In particular, deviations from the simple second-order rate law for anation, rate = /c[Co(CN)5(H20)2 ][Y ], appear to be small and the question of reaction mechanism remains somewhat open at present. The effect of solvent on reaction between [Co(CN)5-(H20)]2 and N 69 and the small positive activation volumes for anation by Br-, I- and SCN-70 are indicative of a dissociative mechanism, but the existence of a long-lived five-coordinate intermediate has not been definitively established. [Pg.653]

Secondary amine acid acceptors can terminate chain growth by reacting with the diadd halide unless amine reactivity is minimized by steric effects. Reactions between a tertiary amine add acceptor and the acid halide or certain solvents must also be avoided. An add chloride and a tertiary amine can react to form a monoamide and an alkyl halide (Equation 13.20). This reaction is known to occur in fair yield at high temperatures and probably takes place to some extent at room temperature [67-69]. In the usual preparative method wherein diacid halide is added to a solution of diamine and a strongly basic acid acceptor, no difficulty is experienced if the polycondensation reaction is rapid. As the polycondensation reaction rate decreases, the potential for interference by side reactions increases. In a polymerization system, this would be a chain terminating reaction. [Pg.996]

For analysing equilibrium solvent effects on reaction rates it is connnon to use the thennodynamic fomuilation of TST and to relate observed solvent-mduced changes in the rate coefficient to variations in Gibbs free-energy differences between solvated reactant and transition states with respect to some reference state. Starting from the simple one-dimensional expression for the TST rate coefficient of a unimolecular reaction a— r... [Pg.833]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

The solvent effect on the diastereofacial selectivity in the reactions between cyclopentadiene and (lR,2S,5R)-mentyl acrylate is dominated by the hydrogen bond donor characteristics of the solvent... [Pg.11]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

The reaction between 2.4 and 2.5 yields four products two enantiomeric endo products and two enantiomeric exo products. In this section the effect of the solvent, the Lewis-acid and the substituents on the endo-exo selectivity are described. Chapter 3 will mainly focus on aspects dealing with the enantioselectivity of the reaction. [Pg.61]

Table 2,8, Solvent effect on the endo-exo selectivity (% endo -% exo) of the nncatalysed and Cu" -ion catalysed Diels-Alder reaction between 2,4c and 2,5 at 25°C. Table 2,8, Solvent effect on the endo-exo selectivity (% endo -% exo) of the nncatalysed and Cu" -ion catalysed Diels-Alder reaction between 2,4c and 2,5 at 25°C.
Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

As expected, the solvent has a significant effect on the endo-exo selectivity of the uncatalysed Diels-Alder reaction between 1 and 2. In contrast, the corresponding effect on the Lewis-acid catalysed reaction is small. There is no beneficial effect of water on the endo-exo selectivity of the catalysed Diels-Alder reaction. The endo-exo selectivity in water is somewhat diminished relative to that in ethanol and acetonitrile. [Pg.174]

We have investigated the effect of solvents on the enantioselectivity. It turned out that water (74% ee) favours the enantioselectivity of the Cu (L-abrine) catalysed Diels-Alder reaction between Ic and 2 as compared to chloroform (44% ee), ethanol (39% ee), THF (24% ee) and acetonitrile (17% ee). The... [Pg.176]

Once the radicals diffuse out of the solvent cage, reaction with monomer is the most probable reaction in bulk polymerizations, since monomers are the species most likely to be encountered. Reaction with polymer radicals or initiator molecules cannot be ruled out, but these are less important because of the lower concentration of the latter species. In the presence of solvent, reactions between the initiator radical and the solvent may effectively compete with polymer initiation. This depends very much on the specific chemicals involved. For example, carbon tetrachloride is quite reactive toward radicals because of the resonance stabilization of the solvent radical produced [1] ... [Pg.352]

Solvent can have an effect on the reaction path. The reaction between benzoyl peroxide and N,iV-dimethylaniline in carbon tetrachloride is complicated by the strong chain transfer tendencies of this solvent [47]. [Pg.834]

Another method for studying solvent effects is the extrathermodynamic approach that we described in Chapter 7 for the study of structure-reactivity relationships. For example, we might seek a correlation between og(,kA/l ) for a reaction A carried out in a series of solvents and log(/ R/A R) for a reference or model reaction carried out in the same series of solvents. A linear plot of og(k/iJk ) against log(/ R/ linear free energy relationship (LFER). Such plots have in fact been made. As with structure-reactivity relationships, these solvent-reactivity relationships can be useful to us, but they have limitations. [Pg.388]

Because the key operation in studying solvent effects on rates is to vary the solvent, evidently the nature of the solvation shell will vary as the solvent is changed. A distinction is often made between general and specific solvent effects, general effects being associated (by hypothesis) with some appropriate physical property such as dielectric constant, and specific effects with particular solute-solvent interactions in the solvation shell. In this context the idea of preferential solvation (or selective solvation) is often invoked. If a reaction is studied in a mixed solvent. [Pg.403]

It is well known that the choice of solvent can have a dramatic effect upon a chemical reaction [1]. As early as 1862 the ability of solvents to decelerate the reaction between acetic acid and ethanol had been noted [2]. Thirty years later the influence of solvents on reaction equilibria was demonstrated for the first time [3]. [Pg.94]


See other pages where Solvent effects reactions between is mentioned: [Pg.82]    [Pg.251]    [Pg.267]    [Pg.343]    [Pg.235]    [Pg.127]    [Pg.574]    [Pg.251]    [Pg.267]    [Pg.4]    [Pg.8]    [Pg.8]    [Pg.11]    [Pg.22]    [Pg.23]    [Pg.26]    [Pg.62]    [Pg.75]    [Pg.97]    [Pg.328]    [Pg.100]    [Pg.417]    [Pg.436]    [Pg.237]    [Pg.293]    [Pg.99]    [Pg.189]    [Pg.285]    [Pg.328]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Reaction between

Solvent between

© 2024 chempedia.info