Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility parameter polarity adjustment

The selectivity of a number of organic modifiers was examined using the predicted log k values of the log P — 3 models from each group in different organic modifier-water mixtures. The composition of the eluent was adjusted so that either the solubility parameter,1 polarity (Po), proton acceptor (Xa), proton donor (Xd), or dipole moment (Xn) values were kept constant to determine which parameter affected the selectivity. The results are summarized in Table 4.3. [Pg.60]

SCF carbon dioxide is a lipophilic solvent since the solubility parameter and the dielectric constant are small compared with a number of polar hydrocarbon solvents. Co-solvents(also called entrainers, moditiers, moderators) such as ethanol have been added to fluids such as carbon dioxide to raise the solvent strength while maintaining it s adjustability. Most liquid cosolvents have solubility parameters which are larger than that of carbon dioxide, so that they may be used to increase yields, or to decrease pressure and solvent requirements. A summary of the large increases in solubility that may be obtained with a simple cosolvent is given at the top of Table I. Cosolvents, unlike carbon dioxide, can form electron donor-acceptor complexes (for example hydrogen bonds) with certain polar solutes to influence solubilities and selectivities beyond what would be expected based on volatilities alone. Several thermodynamic models have been developed to correlate and in some cases predict effects of cosolvent on solubilities( ,2). They are used extensively in SCF research and development... [Pg.5]

Figures 12.1.22 and 12.1.23 explain technical principles behind formation of efficient and selective membrane. Figure 12.1.22 shows a micrograph of hollow PEI fiber produced from N-methyl-2-pyrrolidone, NMP, which has thin surface layer and uniform pores and Figure 12.1.23 shows the same fiber obtained from a solution in dimethylformamide, DMF, which has a thick surface layer and less uniform pores. The effect depends on the interaction of polar and non-polar components. The compatibility of components was estimated based on their Hansen s solubility parameter difference. The compatibility increases as the solubility parameter difference decreases. Adjusting temperature is another method of control because the Hansen s solubility parameter decreases as the temperature increases. A procedure was developed to determine precipitation values by titration with non-solvent to a cloud point. Use of this procedure aids in selecting a suitable non-solvent for a given polymer/solvent system. Figure 12.1.24 shows the results from this method. Successfid in membrane production by either non-solvent inversion or thermally-induced phase separation requires careful analysis of the compatibilities between polymer and solvent, polymer and non-solvent, and solvent and non-solvent. Also the processing regime, which includes temperature control, removal of volatile components, uniformity of solvent replacement must be carefully controlled. Figures 12.1.22 and 12.1.23 explain technical principles behind formation of efficient and selective membrane. Figure 12.1.22 shows a micrograph of hollow PEI fiber produced from N-methyl-2-pyrrolidone, NMP, which has thin surface layer and uniform pores and Figure 12.1.23 shows the same fiber obtained from a solution in dimethylformamide, DMF, which has a thick surface layer and less uniform pores. The effect depends on the interaction of polar and non-polar components. The compatibility of components was estimated based on their Hansen s solubility parameter difference. The compatibility increases as the solubility parameter difference decreases. Adjusting temperature is another method of control because the Hansen s solubility parameter decreases as the temperature increases. A procedure was developed to determine precipitation values by titration with non-solvent to a cloud point. Use of this procedure aids in selecting a suitable non-solvent for a given polymer/solvent system. Figure 12.1.24 shows the results from this method. Successfid in membrane production by either non-solvent inversion or thermally-induced phase separation requires careful analysis of the compatibilities between polymer and solvent, polymer and non-solvent, and solvent and non-solvent. Also the processing regime, which includes temperature control, removal of volatile components, uniformity of solvent replacement must be carefully controlled.
As solubility is often an issue for pharmaceutical compounds, the chosen CSP should have a good stability against solvents with different polarities so that the whole spectrum of retention adjustment can be used. For production processes the availability of the CSP in bulk quantities at a reasonable price should also be taken into account. Different CSP groups are characterized according to these parameters in Table 3.13 (Section 3.1.5.3). [Pg.169]


See other pages where Solubility parameter polarity adjustment is mentioned: [Pg.272]    [Pg.208]    [Pg.568]    [Pg.333]    [Pg.12]    [Pg.258]    [Pg.168]    [Pg.281]    [Pg.102]    [Pg.695]    [Pg.695]    [Pg.439]    [Pg.739]    [Pg.298]    [Pg.91]    [Pg.35]    [Pg.37]    [Pg.163]    [Pg.128]    [Pg.360]    [Pg.144]    [Pg.423]    [Pg.362]    [Pg.86]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Adjustable parameters

Polarity Solubility parameters

Polarity parameter

Polarization parameters

Solubility paramete

Solubility parameter

© 2024 chempedia.info