Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium diisobutylaluminum hydride reduction

Perlmutter used an oxymercuration/demercuration of a y-hydroxy alkene as the key transformation in an enantioselective synthesis of the C(8 ) epimeric smaller fragment of lb (and many more pamamycin homologs cf. Fig. 1) [36]. Preparation of substrate 164 for the crucial cyclization event commenced with silylation and reduction of hydroxy ester 158 (85-89% ee) [37] to give aldehyde 159, which was converted to alkenal 162 by (Z)-selective olefination with ylide 160 (dr=89 l 1) and another diisobutylaluminum hydride reduction (Scheme 22). An Oppolzer aldol reaction with boron enolate 163 then provided 164 as the major product. Upon successive treatment of 164 with mercury(II) acetate and sodium chloride, organomercurial compound 165 and a second minor diastereomer (dr=6 l) were formed, which could be easily separated. Reductive demercuration, hydrolytic cleavage of the chiral auxiliary, methyl ester formation, and desilylation eventually led to 166, the C(8 ) epimer of the... [Pg.233]

Diisobutylaluminum hydride (DIBAL-H) can also be used for partial reduction of cyclic imides37. Although less convenient than sodium borohydride, an important synthetic aspect is the fact that in the reduction of asymmetrically substituted imides, diisobutylaluminum hydride and sodium borohydride may show opposite regioselectivity38,39. [Pg.809]

Amides can also be deacylated by partial reduction. If the reduction proceeds only to the carbinolamine stage, hydrolysis can liberate the deprotected amine. Trichloroac-etamides are readily cleaved by sodium borohydride in alcohols by this mechanism.237 Benzamides, and probably other simple amides, can be removed by careful partial reduction with diisobutylaluminum hydride (see Section 5.3.1.1).238... [Pg.270]

A stereoselective total synthesis of ( )-hirsutine has been developed by Brown et al. (179). Catalytic hydrogenation of hydroxycyclopentenone 327, prepared previously (180), afforded a mixture of isomeric diols 328, which were quantitatively cleaved by sodium periodate to supply 329. Reductive amination of 329 with tryptamine resulted in tetrahydropyridine 330, which upon treatment with aqueous methanol in the presence of hydrochloric acid gave indolo-[2,3-a]quinolizine 321 with pseudo stereochemistry. Conversion of 321 to ( )-hirsutine was accomplished in a similar manner by Wenkert et al. (161) via selective reduction with diisobutylaluminum hydride and methylation with methanol (179). [Pg.201]

Polystyrene-bound carboxylic esters have been reduced with diisobutylaluminum hydride or lithium aluminum hydride. Use of the latter reagent can, however, lead to the formation of insoluble precipitates, which could readily cause problems if reactions are performed in fritted reactors. An alternative procedure for reducing carboxylic esters to alcohols involves saponification, followed by activation (e.g. as the mixed anhydride) and reduction with sodium borohydride (Entries 10 and 11, Table... [Pg.215]

Dichloro-2,2-difluoroethylene, 105 (Diethylamino)sulfur trifluoride, 110 Reduction reactions (see also Deoxygenation, Reductive. . . ) of acetals and ketals Dibromoalane, 237 Diisobutylaluminum hydride, 237 Triethylsilane-Tin(IV) chloride, 237 of acetates and other esters to alkanes Nickel boride, 197 Triphenylsilane, 334 of acyl halides to alcohols Sodium cyanoborohydride-Tin(II) chloride, 280... [Pg.371]

REDUCTION, REAGENTS Aluminum amalgam. Borane-Dimethyl sulfide. Borane-Tetrahydrofurane. t-Butylaminoborane. /-Butyl-9-borabicyclo[3.3.1]nonane. Cobalt boride— f-Butylamineborane. Diisobutylaluminum hydride. Diisopropylamine-Borane. Diphenylamine-Borane. Diphenyltin dihydride. NB-Enantrane. NB-Enantride. Erbium chloride. Hydrazine, lodotrimethylsilane. Lithium-Ammonia. Lithium aluminum hydride. Lithium borohydride. Lithium bronze. Lithium n-butylborohydride. Lithium 9,9-di-n-butyl-9-borabicyclo[3.3.11nonate. Lithium diisobutyl-f-butylaluminum hydride. Lithium tris[(3-ethyl-3pentylK>xy)aluminum hydride. Nickel-Graphite. Potassium tri-sec-butylborohydride. Samarium(II) iodide. Sodium-Ammonia. Sodium bis(2-mcthoxyethoxy)aluminum hydride. [Pg.311]

Based on the precedented reduction of 2//-dihydropyrones,86 the combination of Lewis acid and hydride source exemplified by Et3SiH/BF3 seemed ideally suited to our needs (Scheme 9). While (+)-artemisinin 1 could not be reduced directly to 10-deoxoartemisinin 108 with Et3SiH/BF3, dihydroartemisinin (175, R = H) was smoothly converted at low temperature to desired tetrahydropyran 108 in 96% yield. Further, this method was insensitive to scale being readily accomplished on the gram or milligram level. It was also found that small scale reductions could be more conveniently conducted utilizing diisobutylaluminum hydride in place of sodium borohydride. As applied to the problematical case, it was found that lactone 125 could be reduced to lactol and thence 115 as outlined in Scheme 3 in excellent yield. Furthermore, the yield for the conversion of lactone 45 into 9-butyl-10-deoxoartemisinin 112 could be similarly improved from 58 to 90%. [Pg.148]

A following benzylation of the alcohol at C-3 yields 40. Conversion of 40 into 43 with the primary alcohol functionality protected is realized with sodium cyanoborohydride (NaBHsCN). Reduction with diisobutylaluminum hydride (DIBAH) 42 furnishes 44 leaving the C-6 alcohol unprotected. [Pg.272]

Asymmetric reduction of (5s)-sulfmimine 110 with diisobutylaluminum hydride (DIBAL) afforded a diastereomeric mixture of sulfinamides 111 in 92% yield and in a ratio of 96 4.34 Use of sodium boron hydride, lithium aluminum hydride, or lithium alkoxyaluminum hydride resulted in lower optical yields.33,34,75 The sul-finyl group can be removed by treating 111 with trifluoroacetic acid (TFA) and methanol to give a-phenylethyl amine (112). [Pg.263]

REDUCTION, REAGENTS Bis(N-methylpi-perazinyl)aluminum hydride. Borane-Di-methyl sulfide. Borane-Tetrahydrofurane. Borane-Pyridine. n-Butyllithium-Diisobu-tylaluminum hydride. Calcium-Amines. Diisobutylaluminum hydride. 8-Hydroxy-quinolinedihydroboronite. Lithium aluminum hydride. Lithium 9-boratabicy-clo[3.3.1]nonane. Lithium n-butyldiisopro-pylaluminum hydride. Lithium tri-j c-butylborohydride. Lithium triethylborohy-dride. Monochloroalane. Nickel boride. 2-Phenylbenzothiazoline. Potassium 9-(2,3-dimethyl-2-butoxy)-9-boratabicy-clo[3.3.1]nonane. Raney nickel. Sodium bis(2-methoxyethoxy)aluminum hydride. Sodium borohydride. Sodium borohy-dride-Nickel chloride. Sodium borohy-dride-Praeseodymium chloride. So-dium(dimethylamino)borohydride. Sodium hydrogen telluride. Thexyl chloroborane-Dimethyl sulfide. Tri-n-butylphosphine-Diphenyl disulfide. Tri-n-butyltin hydride. Zinc-l,2-Dibromoethane. Zinc borohydride. [Pg.583]

Resistance to reduction processes seems to be a general characteristic as most catalytic methods (as well as sodium in ethanol) reduce only the ring. However hydantoin can be reduced by diisobutylaluminum hydride to imidazolin-2-one (81TL2063), and imidazoline-2-thiones can be prepared from 2-thiohydantoins (70AHC(12)103). Oxidative procedures often result in ring opening (B-76MI4070i). [Pg.443]

Under milder conditions, treatment of propargylic alcohols with n-BuLi followed by diisobutylaluminum hydride at -78 °C also affords trans-dlXylic alcohols with excellent stereoselectivity. More recently, Red-Al [Na(AlH2(0CH2CH20CH3)2)], sodium AA(2-methoxyethoxy)aluminum hydride] is the reagent of choice for the reduction of acetylenic alcohols. The reaction proceeds cleanly with high tmns-selectivity. °°... [Pg.200]

Selective transformation of a-acetoxy sulfides to primary alcohols is achieved using LiAlH4, diisobutylaluminum hydride at 0 °C and sodium borohydride in ethanol at room temperature. Selective reduction of the Pummerer product (108) to the primary alcohol (109) is a key step in the elegant approach developed for the synthesis of monosaccharides (Scheme 24). ... [Pg.927]


See other pages where Sodium diisobutylaluminum hydride reduction is mentioned: [Pg.148]    [Pg.441]    [Pg.188]    [Pg.172]    [Pg.526]    [Pg.243]    [Pg.370]    [Pg.18]    [Pg.22]    [Pg.191]    [Pg.1162]    [Pg.28]    [Pg.202]    [Pg.536]    [Pg.295]    [Pg.224]    [Pg.3247]    [Pg.35]    [Pg.36]    [Pg.274]    [Pg.228]    [Pg.1708]    [Pg.319]    [Pg.203]    [Pg.927]    [Pg.57]    [Pg.1730]    [Pg.1769]    [Pg.334]    [Pg.282]   


SEARCH



Diisobutylaluminum

Diisobutylaluminum hydride

Diisobutylaluminum hydride reduction

Sodium diisobutylaluminum hydride

Sodium hydride

Sodium hydride reduction

Sodium, reduction

© 2024 chempedia.info