Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small viscosity, influence

The type of chosen polymer and additives most strongly influences the rheological and processing properties of plastisols. Plastisols are normally prepared from emulsion and suspension PVC which differ by their molecular masses (by the Fickentcher constant), dimensions and porosity of particles. Dimensions and shape of particles are important not only due to the well-known properties of dispersed systems (given by the formulas of Einstein, Mooney, Kronecker, etc.), but also due to the fact that these factors (in view of the small viscosity of plasticizer as a composite matrix ) influence strongly the sedimental stability of the system. The joint solution of the equations of sedimentation (precipitation) of particles by the action of gravity and of thermal motion according to Einstein and Smoluchowski leads 37,39) to the expression for the radius of the particles, r, which can not be precipitated in the dispersed system of an ideal plastisol. This expression has the form ... [Pg.89]

The presence of mixed surfactant adsorption seems to be a factor in obtaining films with very viscous surfaces [27], For example, in some cases, the addition of a small amount of nonionic surfactant to a solution of anionic surfactant can enhance foam stability due to the formation of a viscous surface layer possibly a liquid crystalline surface phase in equilibrium with a bulk isotropic solution phase [21, 126], To the extent that viscosity and surface viscosity influence emulsion and foam stability one would predict that stability would vary according to the effect of temperature on the viscosity. Thus, some petroleum industry processes exhibit serious foaming problems at low process temperatures, which disappear at higher temperatures [21],... [Pg.24]

The influence of the vi.scosity ratio 8 on the flow behavior in a capillary was discussed by Rumscheidt and Mason [lOj. They pointed out that when the viscosity ratio is small, the dispersed droplets are drawn out to great lengths but do not burst, and when the viscosity ratio is of the order of unity, the extended droplets break up into smaller droplets. At very high viscosity ratios, the droplets undergo only very limited deformations. This mechanism can explain our observations and supports our theoretical analysis assumptions, summarized previously as points 2, 3, and 4. [Pg.687]

The intermolecular interactions stabilise the helices and greatly influence the properties of exopolysaccharides in solution, ie solubility, viscosity and gel-formation. A strong interaction or good-fit between molecules will lead to insolubility, whereas poor interaction will lead to solubility of exopolysaccharides. The interactions between molecules is influenced by the presence of side-chains. For example, cellulose is insoluble but introduction of a three monosaccharide side-chain into the cellulose chain gives the soluble xanthan. Small changes in the structure of the side-chains can alter the molecular interactions and thus properties of the exopolysaccharide. [Pg.201]

In considering the heat that is transferred, the method first put forward by NussELT(%i and later modified by subsequent workers is followed. If the vapour condenses on a vertical surface, the condensate film flows downwards under the influence of gravity, although it is retarded by the viscosity of the liquid. The flow will normally be streamline and the heal flows through the film by conduction. In Nusselt s work it is assumed that the temperature of the film at the cool surface is equal to that of the surface, and at the other side was at the temperature of the vapour. In practice, there must be some small difference in temperature between the vapour and the film, although this may generally be neglected except where non-condensable gas is present in the vapour. [Pg.472]

Electroviscous effect occurs when a small addition of electrolyte a colloid produces a notable decrease in viscosity. Experiments with different salts have shown that the effective ion is opposite to that of the colloid particles and the influence is much greater with increasing oxidation state of the ion. That is, the decrease in viscosity is associated with decreased potential electrokinetic double layer. The small amoimt of added electrolyte can not appreciably affect on the solvation of the particles, and thus it is possible that one of the determinants of viscosity than the actual volume of the dispersed phase is the zeta potential. [Pg.103]

Oils of the three types are offered in a range of viscosities and this will influence their processing character to some extent, although there is little evidence that it will have much influence on the ultimate compound physical properties, at least in natural rubber compounds. The small additions of oil to a compound help with filler dispersion by lubricating the polymer molecular chains and thus increasing their mobility. There will also be some wetting out of the filler particles which enables them to achieve earlier compatibility with the rubber and improve their distribution and dispersion speed. [Pg.153]

Since the absolute thickness of the effective hydrodynamic boundary layer is very small, below a particular size range minimum, no hydrodynamic effects are perceived experimentally with varying agitation. This, however, does not mean, that there are no such influences Further, the mechanisms of mass transfer and dissolution may change for very small particles depending on a number of factors, such as the fluid viscosity, the Sherwood number (the ratio of mass diffusivity to molecular diffusivity), and the power input per unit mass of fluid. [Pg.149]


See other pages where Small viscosity, influence is mentioned: [Pg.345]    [Pg.99]    [Pg.420]    [Pg.403]    [Pg.527]    [Pg.202]    [Pg.79]    [Pg.56]    [Pg.257]    [Pg.295]    [Pg.485]    [Pg.160]    [Pg.77]    [Pg.269]    [Pg.414]    [Pg.623]    [Pg.339]    [Pg.333]    [Pg.350]    [Pg.38]    [Pg.225]    [Pg.17]    [Pg.236]    [Pg.204]    [Pg.130]    [Pg.623]    [Pg.179]    [Pg.545]    [Pg.598]    [Pg.641]    [Pg.693]    [Pg.103]    [Pg.125]    [Pg.301]    [Pg.144]    [Pg.128]    [Pg.36]    [Pg.548]    [Pg.222]    [Pg.247]    [Pg.265]    [Pg.134]   
See also in sourсe #XX -- [ Pg.805 , Pg.806 ]




SEARCH



Viscosity, influence

© 2024 chempedia.info