Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sites dimensionality

The potential Vk sensed by the diffusing atom or molecule at the site k on a lattice characterized by N sites, dimensionality d and valency v can be expressed in reduced variables for each class of interactions considered. For the case of interacting ionic species, the Boltzmann factor appearing in Eq. (4.54) is... [Pg.348]

Various functional forms for / have been proposed either as a result of empirical observation or in terms of specific models. A particularly important example of the latter is that known as the Langmuir adsorption equation [2]. By analogy with the derivation for gas adsorption (see Section XVII-3), the Langmuir model assumes the surface to consist of adsorption sites, each having an area a. All adsorbed species interact only with a site and not with each other, and adsorption is thus limited to a monolayer. Related lattice models reduce to the Langmuir model under these assumptions [3,4]. In the case of adsorption from solution, however, it seems more plausible to consider an alternative phrasing of the model. Adsorption is still limited to a monolayer, but this layer is now regarded as an ideal two-dimensional solution of equal-size solute and solvent molecules of area a. Thus lateral interactions, absent in the site picture, cancel out in the ideal solution however, in the first version is a properly of the solid lattice, while in the second it is a properly of the adsorbed species. Both models attribute differences in adsorption behavior entirely to differences in adsorbate-solid interactions. Both present adsorption as a competition between solute and solvent. [Pg.391]

In evaluating if a site can be regarded as a two-dimensional potential box, then the rate of adsorption will be given by the rate of molecules impinging on the site area oq- From gas kinetic theory. [Pg.605]

Figure C2.3.2. Two-dimensional radial lattice representation of micelle stmcture using the approach of Dill and Flory [6], Each lattice site is considered to be equal in volume to tire otliers. Reproduced by pennission from [6],... Figure C2.3.2. Two-dimensional radial lattice representation of micelle stmcture using the approach of Dill and Flory [6], Each lattice site is considered to be equal in volume to tire otliers. Reproduced by pennission from [6],...
The Ag (100) surface is of special scientific interest, since it reveals an order-disorder phase transition which is predicted to be second order, similar to tire two dimensional Ising model in magnetism [37]. In fact, tire steep intensity increase observed for potentials positive to - 0.76 V against Ag/AgCl for tire (1,0) reflection, which is forbidden by symmetry for tire clean Ag(lOO) surface, can be associated witli tire development of an ordered (V2 x V2)R45°-Br lattice, where tire bromine is located in tire fourfold hollow sites of tire underlying fee (100) surface tills stmcture is depicted in tlie lower right inset in figure C2.10.1 [15]. [Pg.2750]

Suppose now that the sites are not independent, but that addition of a second (and subsequent) ligand next to a previously bound one (characterized by an equilibrium constant K ) is easier than the addition of the first ligand. In the case of a linear receptor B, the problem is fonnally equivalent to the one-dimensional Ising model of ferromagnetism, and neglecting end effects, one has [M] ... [Pg.2825]

Desjarlais R L, R P Sheridan, G L Seibel, J S Dixon, ID Kuntz and R Venkataraghavan 1988. Using Shap Complementarity as an Initial Screen in Designing Ligands for a Receptor Binding Site of Know Three-Dimensional Structure. Journal of Medicinal Chemistry 31 722-729. [Pg.737]

A second way of dealing with the relationship between aj and the experimental concentration requires the use of a statistical model. We assume that the system consists of Nj molecules of type 1 and N2 molecules of type 2. In addition, it is assumed that the molecules, while distinguishable, are identical to one another in size and interaction energy. That is, we can replace a molecule of type 1 in the mixture by one of type 2 and both AV and AH are zero for the process. Now we consider the placement of these molecules in the Nj + N2 = N sites of a three-dimensional lattice. The total number of arrangements of the N molecules is given by N , but since interchanging any of the I s or 2 s makes no difference, we divide by the number of ways of doing the latter—Ni and N2 , respectively—to obtain the total number of different ways the system can come about. This is called the thermodynamic probabilty 2 of the system, and we saw in Sec. 3.3 that 2 is the basis for the statistical calculation of entropy. For this specific model... [Pg.511]

The stmcture of Pmssian Blue and its analogues consists of a three-dimensional polymeric network of Fe —CN—Fe linkages. Single-crystal x-ray and neutron diffraction studies of insoluble Pmssian Blue estabUsh that the stmcture is based on a rock salt-like face-centered cubic (fee) arrangement with Fe centers occupying one type of site and [Fe(CN)3] units randomly occupying three-quarters of the complementary sites (5). The cyanides bridge the two types of sites. The vacant [Fe(CN)3] sites are occupied by some of the water molecules. Other waters are zeoHtic, ie, interstitial, and occupy the centers of octants of the unit cell. The stmcture contains three different iron coordination environments, Fe C, Fe N, and Fe N4(H20), in a 3 1 3 ratio. [Pg.435]

Fig. 9. Schematic of a two-dimensional cross section of an AgBr emulsion grain showing the surface and formation of various point defects A, processes forming negative kink sites and interstitial silver ions B, positive kink site and C, process forming a silver ion vacancy at a lattice position and positive kink... Fig. 9. Schematic of a two-dimensional cross section of an AgBr emulsion grain showing the surface and formation of various point defects A, processes forming negative kink sites and interstitial silver ions B, positive kink site and C, process forming a silver ion vacancy at a lattice position and positive kink...
Miscellaneous. Iridium dioxide, like RUO2, is useful as an electrode material for dimensionally stable anodes (DSA) (189). SoHd-state pH sensors employing Ir02 electrode material are considered promising for measuring pH of geochemical fluids in nuclear waste repository sites (190). Thin films (qv) ofIr02 ate stable electrochromic materials (191). [Pg.182]


See other pages where Sites dimensionality is mentioned: [Pg.63]    [Pg.63]    [Pg.612]    [Pg.734]    [Pg.284]    [Pg.522]    [Pg.934]    [Pg.1497]    [Pg.1763]    [Pg.2108]    [Pg.2108]    [Pg.2108]    [Pg.2111]    [Pg.2598]    [Pg.2835]    [Pg.66]    [Pg.460]    [Pg.535]    [Pg.538]    [Pg.562]    [Pg.703]    [Pg.703]    [Pg.297]    [Pg.1109]    [Pg.224]    [Pg.226]    [Pg.242]    [Pg.9]    [Pg.193]    [Pg.253]    [Pg.152]    [Pg.219]    [Pg.275]    [Pg.398]    [Pg.172]    [Pg.274]    [Pg.431]    [Pg.451]    [Pg.275]    [Pg.427]    [Pg.427]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Decoding site three-dimensional model

Reference interaction site theory three-dimensional

Three-dimensional reference interaction site model

Two-dimensional systems layered host, layers of sites for

© 2024 chempedia.info