Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver decomposition

Copper and Silver.—Decomposition of 1-propenyl- and 2-butenyl-copper(i) and -silver(i) compounds to hexa-2,4-dienes occurs with retention of configuration. This indicates a non-radical mechanism, for intermediate vinylic radicals would be of very low configurational stability and would thus lead to extensive isomerization." The decomposition of n-propyl-copper(i) gives propene and propane, but no six-carbon molecules. It therefore seems highly unlikely that propyl radicals are intermediates. Perhaps, as in the earlier but very similar report on the absence of eight-carbon molecules from the decomposition of triphenylphosphine-n-butylcopper, the mechanism involves initially the separation of alkene,... [Pg.275]

Oxygen can also be prepared by the thermal decomposition of certain solid compounds containing it. These include oxides of the more noble metals, for example of mercury or silver ... [Pg.260]

Bromine is used in the manufacture of many important organic compounds including 1,2-dibromoethane (ethylene dibromide), added to petrol to prevent lead deposition which occurs by decomposition of the anti-knock —lead tetraethyl bromomethane (methyl bromide), a fumigating agent, and several compounds used to reduce flammability of polyester plastics and epoxide resins. Silver(I) bromide is used extensively in the photographic industry... [Pg.347]

Silver reduces the oxygen evolution potential at the anode, which reduces the rate of corrosion and decreases lead contamination of the cathode. Lead—antimony—silver alloy anodes are used for the production of thin copper foil for use in electronics. Lead—silver (2 wt %), lead—silver (1 wt %)—tin (1 wt %), and lead—antimony (6 wt %)—silver (1—2 wt %) alloys ate used as anodes in cathodic protection of steel pipes and stmctures in fresh, brackish, or seawater. The lead dioxide layer is not only conductive, but also resists decomposition in chloride environments. Silver-free alloys rapidly become passivated and scale badly in seawater. Silver is also added to the positive grids of lead—acid batteries in small amounts (0.005—0.05 wt %) to reduce the rate of corrosion. [Pg.61]

Miscellaneous. Electron beams can be used to decompose a gas such as silver chloride and simultaneously deposit silver metal. An older technique is the thermal decomposition of volatile and extremely toxic gases such as nickel carbonyl [13463-39-3] Ni(CO)4, to form dense deposits or dendritic coatings by modification of coating parameters. [Pg.137]

At room temperature bismuthine rapidly decomposes into its elements. The rate of decomposition increases markedly at higher temperatures (8). Bismuthine decomposes when bubbled through silver nitrate or alkafl solutions but is unaffected by light, hydrogen sulfide, or 4 sulfuric acid solution. There is no evidence for the formation of BiH, though the phenyl derivative, (C H BU, is known. The existence of BiH would not be anticipated on the basis of the trend found with other Group 15 (V) "onium" ions. [Pg.127]

Many of the metal chlorites are not particularly stable and will explode or detonate when stmck or heated. These include the salts of Hg", Tl", Pb ", Cu", and Ag". Extremely fast decomposition with high heat evolution has been noted for barium chlorite [14674-74-9] Ba(Cl02)2, at 190°C, silver chlorite [7783-91-7] AgC102, at 120°C, and lead chlorite [13453-57-17, at 103°C (109). Sodium chlorite can be oxidized by ozone to form chlorine dioxide under acidic conditions (110) ... [Pg.485]

As shown in equation 12, the chemistry of this developer s oxidation and decomposition has been found to be less simple than first envisioned. One oxidation product, tetramethyl succinic acid (18), is not found under normal circumstances. Instead, the products are the a-hydroxyacid (20) and the a-ketoacid (22). When silver bromide is the oxidant, only the two-electron oxidation and hydrolysis occur to give (20). When silver chloride is the oxidant, a four-electron oxidation can occur to give (22). In model experiments the hydroxyacid was not converted to the keto acid. Therefore, it seemed that the two-electron intermediate triketone hydrate (19) in the presence of a stronger oxidant would reduce more silver, possibly involving a species such as (21) as a likely reactive intermediate. This mechanism was verified experimentally, using a controlled, constant electrochemical potential. At potentials like that of silver chloride, four electrons were used at lower potentials only two were used (104). [Pg.509]

The reaction is carried out over a supported metallic silver catalyst at 250—300°C and 1—2 MPa (10—20 bar). A few parts per million (ppm) of 1,2-dichloroethane are added to the ethylene to inhibit further oxidation to carbon dioxide and water. This results ia chlorine generation, which deactivates the surface of the catalyst. Chem Systems of the United States has developed a process that produces ethylene glycol monoacetate as an iatermediate, which on thermal decomposition yields ethylene oxide [75-21-8]. [Pg.433]

The thermal decomposition of the silver salt of dinitrophenylmethane in the presence of an alkene produced an isoxazoline A-oxide via a proposed arylnitrocarbene (80JOC4158),... [Pg.102]

The decomposition of silver oxide was one of the earhest solid reactions studied. It is smoothly reversible below 200°C (392°F) with equation for partial pressure of oxygen,... [Pg.2122]

Fig. 5. HREM of enclosed silver particles in CNTs. The metallic particles were obtained by electron irradiation-induced decomposition of introduced silver nitrate. Note that the gases produced by the nitrate decomposition have eroded the innermost layer of the tube. Fig. 5. HREM of enclosed silver particles in CNTs. The metallic particles were obtained by electron irradiation-induced decomposition of introduced silver nitrate. Note that the gases produced by the nitrate decomposition have eroded the innermost layer of the tube.
The decomposition of the nitrates produces oxygen molecules, and we have verified that if a mixture of silver nitrates and closed tubes is submitted to a thermal treatment (400°C) decomposing the salt, it is possible to observe filled CNTs (Ag, Co, Cu [34]). It appears that oxygen liberated during the thermal decomposition of the metal salt erodes the CNT tip and the yet un-decomposed salt then enters by capillarity (see Fig. 8). We have also observed during the electron-irradiation decomposition of enclosed nitrate that the liberated gases erodes the CNT cavity [22] (see the innermost tubes in Fig. 5). [Pg.136]

The pyrolysis of perfluoro carboxylic salts can result both in mono and bimolecular products At 210-220 °C, silver salts give mostly the coupled products, at 160-165 °C in A -methylpyrrolidinone, the corresponding copper salts also give the simple decarboxylated compounds in nearly equal amounts The decomposition of the copper salts m the presence of lodobenzene at 105-125 °C results m a phenyl derivative, in addition to the olefin and coupled product [94] (equations 60-62)... [Pg.906]

Silver(I) Inflate and copper(I) triflate can be applied as catalysts A representative example is the preparation of alkynyl tosylates by the catalytic decomposition of alkynyl lodonium salts in the presence of these salts [727] (equation 67)... [Pg.965]

The 5-isobutoxymethyl monothioacetal is stable io2N hydrochloric acid and to 50% acetic acid some decomposition occurs in 2 A sodium hydroxide. The monothioacetal is also stable to 12 A hydrochloric acid in acetone (used to remove an A -triphenylmethyl group) and to hydrazine hydrate in refluxing ethanol (used to cleave an A-phthaloyl group). It is cleaved by boron trifluoride etherate in acetic acid, by silver nitrate in ethanol, and by trifluoroacetic acid. The monothioacetal is oxidized to a disulfide by thiocyanogen, (SCN)2. ... [Pg.472]

For all three halates (in the absence of disproportionation) the preferred mode of decomposition depends, again, on both thermodynamic and kinetic considerations. Oxide formation tends to be favoured by the presence of a strongly polarizing cation (e.g. magnesium, transition-metal and lanthanide halates), whereas halide formation is observed for alkali-metal, alkaline- earth and silver halates. [Pg.864]

The diazo ketone 3, when treated with silver oxide as catalyst, decomposes into ketocarbene 5 and dinitrogen Na. This decomposition reaction can also be achieved by heating or by irradiation with uv-light. The ketocarbene undergoes a Wolff rearrangement to give a ketene 6 ... [Pg.17]

An a-diazo ketone 1 can decompose to give a ketocarbene, which further reacts by migration of a group R to yield a ketene 2. Reaction of ketene 2 with water results in formation of a carboxylic acid 3. The Woljf re arrangement is one step of the Arndt-Eistert reaction. Decomposition of diazo ketone 1 can be accomplished thermally, photochemically or catalytically as catalyst amorphous silver oxide is commonly used ... [Pg.301]


See other pages where Silver decomposition is mentioned: [Pg.226]    [Pg.428]    [Pg.422]    [Pg.186]    [Pg.224]    [Pg.472]    [Pg.12]    [Pg.457]    [Pg.357]    [Pg.59]    [Pg.333]    [Pg.510]    [Pg.554]    [Pg.129]    [Pg.239]    [Pg.535]    [Pg.377]    [Pg.469]    [Pg.2]    [Pg.508]    [Pg.458]    [Pg.91]    [Pg.239]    [Pg.586]    [Pg.344]    [Pg.47]    [Pg.689]    [Pg.258]    [Pg.366]    [Pg.136]    [Pg.725]   
See also in sourсe #XX -- [ Pg.220 , Pg.221 ]




SEARCH



Decomposition of silver carbonate

Decomposition of silver oxalate

Decomposition silver azide

Formation of a Silver Acetylide and Its Decomposition

Ozone, decomposition silver oxide

Silver acetate, decomposition

Silver acetylide, decomposition

Silver benzoate, as catalyst in decomposition of diazoketones

Silver carbonate, decomposition

Silver carbonate, decomposition, crystal

Silver carbonate, decomposition, crystal water

Silver chlorate, decomposition

Silver chlorite, decomposition

Silver ethyl , decomposition

Silver formate, decomposition

Silver malonate decomposition

Silver nitrate decomposition

Silver nitrite, decomposition

Silver oxalate, decomposition

Silver oxalate, thermal decomposition

Silver oxide, decomposition

Silver perchlorate, decomposition

Silver periodate, decomposition

Silver permanganate, decomposition

Silver permanganate, decomposition additives

© 2024 chempedia.info