Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver codeposition

Although some changes occur in the melting furnace, cathode impurities are usually reflected directly in the final quaUty of electrorefined copper. It is commonly accepted that armealabiUty of copper is unfavorably affected by teUurium, selenium, bismuth, antimony, and arsenic, in decreasing order of adverse effect. Silver in cathodes represents a nonrecoverable loss of silver to the refiner. If the copper content of electrolyte is maintained at the normal level of 40—50 g/L, and the appropriate ratio of arsenic to antimony and bismuth (29) is present, these elements do not codeposit on the cathode. [Pg.203]

Codeposition of silver vapor with perfluoroalkyl iodides at -196 °C provides an alternative route to nonsolvated primary perfluoroalkylsilvers [272] Phosphine complexes of trifluaromethylsilver are formed from the reaction of trimethyl-phosphme, silver acetate, and bis(trifluoromethyl)cadmium glyme [755] The per-fluoroalkylsilver compounds react with halogens [270], carbon dioxide [274], allyl halides [270, 274], mineral acids and water [275], and nitrosyl chloride [276] to give the expected products Oxidation with dioxygen gives ketones [270] or acyl halides [270] Sulfur reacts via insertion of sulfur into the carbon-silver bond [270] (equation 188)... [Pg.716]

We have already shown how simultaneous codeposition of two metals in inert-gas matrices can lead to the formation of mixed-metal dimers. As in the case of silver, it was found that irradiation into the atomic absorptions of Cr or Mo results in formation of their respective dimers and trimers (114). In addition to this, however, irradiation into the atomic resonances of the two metals in the presence of each other results (114) in formation of the mixed-metal species CrMo, CrjMo, and CrMo2. It would seem that selective irradiation into the 300-400-nm bands of atomic Cr or Mo excites the 3d 4p, 3dMs 4p , or 4d 5p, ... [Pg.108]

Between 1980 and about 2000 most of the studies on the electrodeposition in ionic liquids were performed in the first generation of ionic liquids, formerly called room-temperature molten salts or ambient temperature molten salts . These liquids are comparatively easy to synthesize from AICI3 and organic halides such as Tethyl-3-methylimidazolium chloride. Aluminum can be quite easily be electrode-posited in these liquids as well as many relatively noble elements such as silver, copper, palladium and others. Furthermore, technically important alloys such as Al-Mg, Al-Cr and others can be made by electrochemical means. The major disadvantage of these liquids is their extreme sensitivity to moisture which requires handling under a controlled inert gas atmosphere. Furthermore, A1 is relatively noble so that silicon, tantalum, lithium and other reactive elements cannot be deposited without A1 codeposition. Section 4.1 gives an introduction to electrodeposition in these first generation ionic liquids. [Pg.83]

Alternatively PAA can be obtained without solvent by vapor deposition polymerization as described first by Salem et al. [2], In this technique the dianhydride py-romellitic and the dianhydride diamine (4,4 -oxidianiline) are codeposited onto a substrate, where they react to form PAA. Again the transformation to Polyimide is obtained by subsequent heating to temperatures up to 350°C. By comparison to spun dn films, initial interaction of the polymer with the substrate occurs in the uncomplexed PAA state. The chemical interaction between PAA and the metal establishes the adhesion of the final polyimide film. This is discussed in this communication for evaporated gold cluster and bulk silver surfaces. [Pg.354]

In selected cases two different metals can be codeposited onto a substrate by electroless plating. Shu etal. [1993] have attempted simultaneous deposition of palladium and silver... [Pg.26]

Supported mixed metal catalysts are also prepared by other means such as the deposition of bimetallic colloids onto a support O and the decomposition of supported bimetallic cluster compounds.208 The photocatalytic codeposition of metals onto titania was also attempted with mixed results.209 with a mixture of chloroplatinic acid and rhodium chloride, very little rhodium was deposited on the titania. With aqueous solutions of silver nitrate and rhodium chloride, more rhodium was deposited but deposition was not complete. In aqueous ammonia, though, deposition of both silver and rhodium was complete but the titania surface was covered with small rhodium crystallites and larger silver particles containing some rhodium. With a mixture of chloroplatinic acid and palladium nitrate both metals were deposited but, while most of the resulting crystallites were bimetallic, the composition varied from particle to particle.209... [Pg.304]

Electroless deposition, or autocatalytic plating, may be defined as deposition of a metal coating by a controlled chemical reduction, catalyzed by the metal or alloy being deposited. Electroless deposition has been known for a long time. One of its early uses was the deposition of a mirror-like layer of silver on the internal surfaces of Dewar flasks for improved thermal isolation, and as the back coating of mirrors. Later, it was used for deposition of different metals and alloys, and even for induced codeposition of alloys. [Pg.227]

In single-layer devices, the emitter layer was fabricated by the dip coating of the polymer layer. Dichloroethane solutions containing PVK, having a molecular weight of 150,000 purchased from Kanto chemical Ltd., and several dopant dyes were prepared and dip coated onto an ITO coated glass substrate. The thickness of the PVK layer was ca. 1000 A. Then, a magnesium and silver cathode was codeposited. [Pg.382]


See other pages where Silver codeposition is mentioned: [Pg.385]    [Pg.385]    [Pg.301]    [Pg.186]    [Pg.462]    [Pg.27]    [Pg.143]    [Pg.214]    [Pg.217]    [Pg.4]    [Pg.114]    [Pg.85]    [Pg.130]    [Pg.1145]    [Pg.2848]    [Pg.2851]    [Pg.246]    [Pg.365]    [Pg.246]   
See also in sourсe #XX -- [ Pg.693 ]




SEARCH



Codeposition

© 2024 chempedia.info