Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Siloxanes polysiloxanes

SilOXaneS. Polysiloxanes are used as segments in block copolymers because of their low temperature flexibility, high gas permeabilities, excellent electrical properties, biocompatibility, and surface properties. [Pg.8229]

Kinetics of hydrolysis of chlorodi and penta-siloxanes indicates acid catalysis with the reaction first order with respect to siloxane. Polysiloxanes Me2SiO(MeRSiO) SiMe2 (R=vinyl,aryl) and... [Pg.112]

The reaction is of practical importance in the vulcanization of siUcone mbbers (see Rubber compounding). Linear hydroxy-terrninated polydimethyl siloxanes are conveniently cross-linked by reaction with methyldiethoxysilane or triethoxysilane [998-30-1]. Catalysts are amines, carboxyflc acid salts of divalent metals such as Zn, Sn, Pb, Fe, Ba, and Ca, and organotin compounds. Hydroxy-terrninated polysiloxanes react with Si—H-containing polysiloxanes to... [Pg.26]

Mark and his co-workers reported the reinforcement of poly(dimethylsiloxane) networks by silica gel particles [1-6]. For example, bis(silanol)-terminated poly-(dimethylsiloxane) was reacted with tetraethoxysilane in the presence of acid-catalyst to produce the reinforced siloxane networks. The reaction proceeded homogeneously. The content of the silica filler can be controlled by the feed ratio of polysiloxane and tetraethoxysilane. [Pg.12]

Block copolymers containing polysiloxane segments are of great interest as polymeric surfactants and elastomers. Polycondensation and polyaddition reactions of functionally ended prepolymers are usually employed to prepare well-defined block copolymers. The living polystyrene anion reacts with a,co-dichloropoly(dimethyl-siloxane) to form multiblock copolymers398. ... [Pg.35]

Detailed information on the copolymerization of cyclic trifluoropropylmethyl-siloxane trimer and octamethylcyclotetrasiloxane is also very limited in the open literature26 27 . Recently, preparation of various amine terminated (dimethyl-tri-fluoropropyl,methyl)siloxane oligomers with varying molecular weights and backbone compositions has been reported 69115 ll7). Table 11 shows various properties of the oligomers produced as a function of composition. These types of modification play very important roles in determining the solubility characteristics and hence the compatibility of resultant polysiloxanes with other conventional organic monomers... [Pg.26]

Poly(arylester)-polysiloxane multiblock copolymers have also been synthesized by the interfacial polymerization of aminopropyl terminated polysiloxane oligomers with bisphenol-A and a mixture of isophthaloyl and terephthaloyl chlorides117, 193-1951 as illustrated in Reaction Scheme XV. In these reactions the poly(arylester) blocks are formed in situ during the copolymerization, so the control of their block sizes is not very precise. It is also important to note that since aminopropyl terminated siloxane oligomers are employed, the linkages which connect the arylester and siloxane blocks are amide linkages. [Pg.38]

Hydrosilation reactions have been one of the earlier techniques utilized in the preparation of siloxane containing block copolymers 22,23). A major application of this method has been in the synthesis of polysiloxane-poly(alkylene oxide) block copolymers 23), which find extensive applications as emulsifiers and stabilizers, especially in the urethane foam formulations 23-43). These types of reactions are conducted between silane (Si H) terminated siloxane oligomers and olefinically terminated poly-(alkylene oxide) oligomers. Consequently the resulting system contains (Si—C) linkages between different segments. Earlier developments in the field have been reviewed 22, 23,43> Recently hydrosilation reactions have been used effectively by Ringsdorf 255) and Finkelmann 256) for the synthesis of various novel thermoplastic liquid crystalline copolymers where siloxanes have been utilized as flexible spacers. Introduction of flexible siloxanes also improved the processibility of these materials. [Pg.46]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]

Polysiloxane based block copolymers have also been examined with respect to their transport properties, because these copolymers are of special interest as membranes in various biomedical applications 376). The combination of good mechanical, dielectric, permeation and film formation properties of siloxane-carbonate segmented copolymers have led to their use as blood oxygenation, dialysis and microelectrode membranes 392 394. ... [Pg.73]

Siloxane containing polyester, poly(alkylene oxide) and polystyrene type copolymers have been used to improve the heat resistance, lubricity and flow properties of epoxy resin powder coatings 43). Thermally stable polyester-polysiloxane segmented copolymers have been shown to improve the flow, antifriction properties and scratch resistance of acrylic based auto repair lacquers 408). Organohydroxy-terminated siloxanes are also effective internal mold release agents in polyurethane reaction injection molding processes 409). [Pg.74]

The polyoxyalkylene units in the copolymer have a molecular weight below 500, and the polysiloxane units have 3 to 50 silicon atoms. The resin has a phenol/aldehyde ratio of 2 1 to 1 5 and an average molecular weight of 500 to 20,000 Dalton. The composition shows synergistic demulsification activity when compared with the individual components. The siloxane units can be either in blocks [979,980] of the polyoxyalkylene-polysiloxane copolymer or randomly distributed [728,729]. [Pg.335]

Figure 2.6 Reagents used for the deactivation of silanol groups on glass surfaces. A - disilazanes, B > cyclic siloxanes, and C -silicon hydride polysiloxanes in which R is usually methyl, phenyl, 3,3,3-trifluoropropyl, 3-cyanopropyl, or some combination of these groups. The lover portion of the figure provides a view of the surface of fused silica with adsorbed water (D), fused silica surface after deactivation with a trimethylsilylating reagent (E), and fused silica surface after treatment with a silicon hydride polysiloxane (F). Figure 2.6 Reagents used for the deactivation of silanol groups on glass surfaces. A - disilazanes, B > cyclic siloxanes, and C -silicon hydride polysiloxanes in which R is usually methyl, phenyl, 3,3,3-trifluoropropyl, 3-cyanopropyl, or some combination of these groups. The lover portion of the figure provides a view of the surface of fused silica with adsorbed water (D), fused silica surface after deactivation with a trimethylsilylating reagent (E), and fused silica surface after treatment with a silicon hydride polysiloxane (F).
Cyclophosphazenes are a fascinating group of inorganic heterocyclic compounds whose chemistry is multi-faceted, well developed and reasonably well understood. They are closely related to the linear poly-phosphazenes this relationship is unlike any other existing between ring-polymer systems. Although cyclic siloxanes and polysiloxanes have a close interrelationship, the number and types of cyclophospha-zene derivatives that are known, together with their exact counterparts in polyphosphazenes, underscore the utility of cyclophosphazenes as models for the more complex polyphosphazenes. The literature on cyclophosphazenes has appeared earlier in the form of books (1,2), chapters of books (3-5), authoritative compilations of data (6,7), and several reviews (8-21). The current literature on this subject is reported annually in the Specialist Periodic Reports published by the Royal Society of chemistry (22). This review deals mostly with chlorocyclo-... [Pg.159]


See other pages where Siloxanes polysiloxanes is mentioned: [Pg.461]    [Pg.461]    [Pg.566]    [Pg.332]    [Pg.47]    [Pg.537]    [Pg.558]    [Pg.678]    [Pg.680]    [Pg.3]    [Pg.6]    [Pg.8]    [Pg.9]    [Pg.11]    [Pg.23]    [Pg.36]    [Pg.37]    [Pg.37]    [Pg.40]    [Pg.43]    [Pg.43]    [Pg.45]    [Pg.46]    [Pg.48]    [Pg.54]    [Pg.57]    [Pg.72]    [Pg.4]    [Pg.480]    [Pg.61]    [Pg.68]    [Pg.78]    [Pg.79]    [Pg.89]    [Pg.202]    [Pg.142]    [Pg.88]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Polysiloxane

Polysiloxanes

Siloxane polymers Polysiloxanes

Siloxanes and polysiloxanes (silicones)

© 2024 chempedia.info