Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicone spherical

However, conductive elastomers have only ca <10 of the conductivity of soHd metals. Also, the contact resistance of elastomers changes with time when they are compressed. Therefore, elastomers are not used where significant currents must be carried or when low or stable resistance is required. Typical apphcations, which require a high density of contacts and easy disassembly for servicing, include connection between Hquid crystal display panels (see Liquid crystals) and between printed circuit boards in watches. Another type of elastomeric contact has a nonconducting silicone mbber core around which is wrapped metalized contacts that are separated from each other by insulating areas (25). A newer material has closely spaced strings of small spherical metal particles in contact, or fine soHd wires, which are oriented in the elastomer so that electrical conduction occurs only in the Z direction (26). [Pg.31]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

Colloidal suspensions are systems of small mesoscopic solid particles suspended in an atomic liquid [1,2]. We will use the term colloid a little loosely, in the sense of colloidal particle. The particles may be irregularly or regularly shaped (Fig. 1). Among the regular shapes are tiny spherical balls, but also cylindrical rods or flat platelets. As the particles are solid, fluctuations of their form do not occur as they do in micellar systems. Not all particles in a suspension will, in general, have the same form. This is an intrinsic effect of the mesoscopic physics. Of course in an atomic system, say silicon, all atoms are precisely similar. One is often interested in the con-... [Pg.746]

These spherical nano-particles about 55 nm in diameter have a fluorescent material of ruthenium pyridine inside, and the shell of silicon dioxide, as shown in Fig. 36. The excitation wavelength of the ruthenium pyridine is 480 nm and the emission wavelength is 592 nm [81]. In order to get a clear image of nano-particles, the mass concentration of the fluorescent particles should be limited to a very low level. [Pg.26]

It is found that the tetra-isoamylphosphonium cation does not take a roughly spherical shape but accommodates an iodide ion 480 pm from the phosphorus atom. Neutron diffraction of phosphonium bromide crystals shows no evidence of hydrogen-bonding. The ructures of bis(trimethylphosphine)silicon tetrachloride and the iridium salt (134) are also reported. [Pg.282]

The refractive index of amorphous silicon is. within certain limits, a good measure for the density of the material. If we may consider the material to consist of a tightly bonded structure containing voids, the density of the material follows from the void fraction. This fraction / can be computed from the relative dielectric constant e. Assuming that the voids have a spherical shape, / is given by Bruggeman [61] ... [Pg.6]

Iversen et al, in their study of crystalline beryllium [32], were the first to make use of NUP distributions calculated by superposition of thermally-smeared spherical atoms. More recently, a superposition of thermally-smeared spherical atoms was used as NUP in model studies on noise-free structure factor amplitudes for crystalline silicon and beryllium by de Vries et al. [38]. The artefacts present in the densities computed with a uniform prior-prejudice distributions have been shown to disappear upon introduction of the NUP. No quantitative measure of the residual errors were given. [Pg.15]

The dynamic process of bubble collapse has been observed by Lauter-born and others by ultrahigh speed photography (105 frames/second) of laser generated cavitation (41). As seen in Fig. 4, the comparison between theory and experiment is remarkably good. These results were obtained in silicone oil, whose high viscosity is responsible for the spherical rebound of the collapsed cavities. The agreement between theoretical predictions and the experimental observations of bubble radius as a function of time are particularly striking. [Pg.79]

SEM studies of the obtained TEG-Si powders have shown almost uniform distribution of silicon particles on TEG surface. These metal coated particles were found to be of the spherical shape, mostly similar in size... [Pg.362]

Some other situation is realized in a case of TEG-tin CMs. Electron microscopy studies of the obtained TEG-Sn powders revealed the uniform coverage of TEG surface by tin particles. Tin particles are of spherical shape and their sizes are about 40-80 nm, i.e. somewhat higher than in a case of silicon particles. Low scatter of particle sizes is observed as in a case of TEG-silicon system. However, as it is clearly seen from the data of the X-ray structure analysis (Figure 4) tin particles deposited on the surface of graphite support are in crystalline state. The distinct and narrow tin reflections at the X-ray diffraction pattern evidence this fact. [Pg.363]

Fig. 8 Schematic representation of block copolymer nanolithography process, a Schematic cross-sectional view of a nanolithography template consisting of a uniform mono-layer of PB spherical microdomains on silicon nitride. PB wets the air and substrate interfaces, b Schematic of the processing flow when an ozonated copolymer film is used as a positive resist, which produces holes in silicon nitride, c Schematic of the processing flow when an osmium-stained copolymer film is used as a negative resist, which produces dots in silicon nitride, (taken from [44])... Fig. 8 Schematic representation of block copolymer nanolithography process, a Schematic cross-sectional view of a nanolithography template consisting of a uniform mono-layer of PB spherical microdomains on silicon nitride. PB wets the air and substrate interfaces, b Schematic of the processing flow when an ozonated copolymer film is used as a positive resist, which produces holes in silicon nitride, c Schematic of the processing flow when an osmium-stained copolymer film is used as a negative resist, which produces dots in silicon nitride, (taken from [44])...
Investigation of Prolate andNear Spherical Geometries of Mid-Sized Silicon Clusters. [Pg.387]

A certain anisotropy of the refractive index along specific crystallographic axes indicates that the microstructures in the porous network are not spherical but somewhat elongated along the PS growth direction [Mi4], This birefringence is below 1% for micro PS, while it may reach values in the order of 10% for meso PS films formed on (110) oriented silicon wafers [Ko22]. [Pg.134]

Fig. 7.8 TEM images of the Si SiOx/C nanocomposite nanoparticles produced by hydrothermal carbonization of glucose and Si and further carbonization at 750 °C under N2. (a) Overview of the Si SiOx/C nanocomposites and a TEM image at higher magnification (in the inset) showing uniform spherical particles (b) HRTEM image clearly showing the core/shell structure (c), (d) HRTEM image displaying details of the silicon nanoparticles coated with SiOxand carbon. Fig. 7.8 TEM images of the Si SiOx/C nanocomposite nanoparticles produced by hydrothermal carbonization of glucose and Si and further carbonization at 750 °C under N2. (a) Overview of the Si SiOx/C nanocomposites and a TEM image at higher magnification (in the inset) showing uniform spherical particles (b) HRTEM image clearly showing the core/shell structure (c), (d) HRTEM image displaying details of the silicon nanoparticles coated with SiOxand carbon.

See other pages where Silicone spherical is mentioned: [Pg.436]    [Pg.436]    [Pg.2214]    [Pg.2396]    [Pg.94]    [Pg.118]    [Pg.177]    [Pg.11]    [Pg.62]    [Pg.308]    [Pg.204]    [Pg.445]    [Pg.254]    [Pg.112]    [Pg.234]    [Pg.67]    [Pg.107]    [Pg.234]    [Pg.97]    [Pg.217]    [Pg.637]    [Pg.365]    [Pg.81]    [Pg.461]    [Pg.113]    [Pg.121]    [Pg.169]    [Pg.125]    [Pg.211]    [Pg.155]    [Pg.48]    [Pg.271]    [Pg.196]    [Pg.24]    [Pg.276]    [Pg.158]    [Pg.9]    [Pg.627]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



© 2024 chempedia.info