Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shear rate viscosity affected

Viscosity Maxima. The low-shear-rate viscosities of both commercial and model associative thickeners below their c /, values will increase with the addition of conventional low molecular weight surfactants or coalescing aid (22). With HEUR polymers, solution viscosities are observed to increase, achieve a maximum value, and then decrease with continued increase in surfactant concentration (23). This type of behavior is illustrated (Figure 5) for four commercial HEURs with a nonionic surfactant (typical of that used in coating formulations). A similar behavior has been observed (24) with a classical anionic surfactant and hydrophobically modified (hydroxy-ethyl)cellulose (HMHEC) and is reviewed in Chapter 18. Intermicellar networks, formed by the participation of one or more hydrophobes from different polymers in the micelles of conventional surfactants, were again recently suggested (25) to affect viscous solutions. [Pg.507]

Figure 3.38 Relationship between viscosity and shear rate, as affected by molecular weight... Figure 3.38 Relationship between viscosity and shear rate, as affected by molecular weight...
Therefore, the ratio between the viscosity of continuous and dispersed phases at a given shear rate strongly affects the final morphology of the blend (particle diameter and interparticular distance) both in the core of the material (with a strong effect on the impact resistance) and near to the surface (with a series of consequences for the optical properties and the paintability of the block copoljuner) [4]. [Pg.508]

Properties. Xanthan gum is a cream-colored powder that dissolves in either hot or cold water to produce solutions with high viscosity at low concentration. These solutions exhibit pseudoplasticity, ie, the viscosity decreases as the shear rate increases. This decrease is instantaneous and reversible. Solutions, particularly in the presence of small amounts of electrolyte, have exceUent thermal stabiHty, and their viscosity is essentially constant over the range 0 to 80°C. They are not affected by changes in pH ranging from 2 to 10. [Pg.436]

If the blending process is between two or more fluids with relatively low viscosity such that the blending is not affected by fluid shear rates, then the difference in blend time and circulation between small and large tanks is the only factor involved. However, if the blending involves wide disparities in the density of viscosity and surface tension between the various phases, then a certain level of shear rate may be required before blending can proceed to the required degree of uniformity. [Pg.1631]

Modification of filler s surface by active media leads to the same strong variation in viscosity. We can point out as an example the results of work [8], in which the values of the viscosity of dispersions of CaC03 in polystyrene melt were compared. For q> = 0.3 and the diameter of particles equal to 0.07 nm a treatment of the filler s surface by stearic acid caused a decrease in viscosity in the region of low shear rates as compared to the viscosity of nontreated particles more than by ten times. This very strong result, however, should not possibly be understood only from the point of view of viscometric measurements. The point is that, as stated above, a treatment of the filler particles affects its ability to netformation. Therefore for one and the same conditions of measuring viscosity, the dispersions being compared are not in equivalent positions with respect to yield stress. Thus, their viscosities become different. [Pg.90]

Chain-growth polymerizations are diffusion controlled in bulk polymerizations. This is expected to occur rapidly, even prior to network development in step-growth mechanisms. Traditionally, rate constants are expressed in terms of viscosity. In dilute solutions, viscosity is proportional to molecular weight to a power that lies between 0.6 and 0.8 (22). Melt viscosity is more complex (23) Below a critical value for the number of atoms per chain, viscosity correlates to the 1.75 power. Above this critical value, the power is nearly 3 4 for a number of thermoplastics at low shear rates. In thermosets, as the extent of conversion reaches gellation, the viscosity asymptotically increases. However, if network formation is restricted to tightly crosslinked, localized regions, viscosity may not be appreciably affected. In the current study, an exponential function of degree of polymerization was selected as a first estimate of the rate dependency on viscosity. [Pg.284]

Figure 4.6 Thixotropic behavior, in which time at constant shear rate affects viscosity. From J. S. Reed, Principles of Ceramics Processing, 2nd ed. Copyright 1995 by John Wiley Sons, Inc. This material is used by permission of John Wiley Sons, Inc. Figure 4.6 Thixotropic behavior, in which time at constant shear rate affects viscosity. From J. S. Reed, Principles of Ceramics Processing, 2nd ed. Copyright 1995 by John Wiley Sons, Inc. This material is used by permission of John Wiley Sons, Inc.
In a later investigation, Kraynik and Hansen [62] demonstrated that the shear rate and liquid film viscosity greatly affect the rheological properties of foams. They studied the effect on foam properties and structure with variation of capillary number, Ca, which is the ratio of viscous to surface tension forces in the liquid films, and is given by -... [Pg.175]

The characterisation of the viscosity is difficult for non-Newtonian fluids because the viscosity changes as a result of the flow process, which increases the shear rate. This is further complicated for two-phase fluids because the presence of bubbles will also affect the viscosity. The simpler methods to obtain G for high viscosity fluids make the simplifying assumptions that the fluid viscosity is equal to the liquid viscosity and that the fluid is Newtonian. [Pg.99]

Some fermentation broths are non-Newtonian due to the presence of microbial mycelia or fermentation products, such as polysaccharides. In some cases, a small amount of water-soluble polymer may be added to the broth to reduce stirrer power requirements, or to protect the microbes against excessive shear forces. These additives may develop non-Newtonian viscosity or even viscoelasticity of the broth, which in turn will affect the aeration characteristics of the fermentor. Viscoelastic liquids exhibit elasticity superimposed on viscosity. The elastic constant, an index of elasticity, is defined as the ratio of stress (Pa) to strain (—), while viscosity is shear stress divided by shear rate (Equation 2.4). The relaxation time (s) is viscosity (Pa s) divided by the elastic constant (Pa). [Pg.201]


See other pages where Shear rate viscosity affected is mentioned: [Pg.458]    [Pg.641]    [Pg.459]    [Pg.240]    [Pg.85]    [Pg.320]    [Pg.224]    [Pg.459]    [Pg.34]    [Pg.413]    [Pg.574]    [Pg.2696]    [Pg.202]    [Pg.125]    [Pg.272]    [Pg.352]    [Pg.491]    [Pg.265]    [Pg.1634]    [Pg.177]    [Pg.587]    [Pg.719]    [Pg.340]    [Pg.257]    [Pg.401]    [Pg.485]    [Pg.188]    [Pg.106]    [Pg.554]    [Pg.66]    [Pg.81]    [Pg.97]    [Pg.474]    [Pg.533]    [Pg.36]    [Pg.86]    [Pg.50]    [Pg.51]    [Pg.52]    [Pg.126]   
See also in sourсe #XX -- [ Pg.113 , Pg.114 ]




SEARCH



Shear rate associating polymer viscosity affected

Shear rate polymer viscosity affected

Shear rates

Viscosity shear

Viscosity shear rate

© 2024 chempedia.info