Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine protease with peptide chloromethyl ketone

Inhibitors of Thiol and Carboxyl Proteases. Thiol proteases are inactivated by peptide chloromethyl ketones (30) and other alkylating agents. Peptide diazomethyl ketones are much more selective reagents since they do not react with serine proteases as do chloromethyl ketones. Diazoketones have been applied to papain and cathepsin B (48) thus far and it appears that they should be applicable to most thiol proteases. Specificity should be obtainable by changing the peptide sequence of the inhibitor to match that of the enzyme being studied. [Pg.359]

Peptide Chloromethyl Ketones. Peptide chloromethyl ketone inhibitors have been studied extensively and a fairly detailed picture of the inhibition reaction (see Figure 3) has emerged from numerous chemical and crystallographic studies (30,31). The inhibitor resembles a serine protease substrate with the exception that the scissile peptide bond of the substrate is replaced with a chloromethyl ketone functional group in the inhibitor. The inhibitor binds to the serine protease in the extended substrate binding site and the reactive chloromethyl ketone functional group is placed then in the proper position to alkylate the active-site histidine residue. In addition, the serine OH reacts with the inhibitor carbonyl group to form a hemiketal. [Pg.351]

Peptide chloromethyl ketone inhibitors have been developed for almost every serine protease that has been characterized adequately (30). For example, human leukocyte elastase, due to its involvement in emphysema, has been studied extensively with this class of inhibitor (32). The rate at which peptide chloromethyl ketones inhibit elastase is influenced by their interaction with the primary substrate binding site (Si) of the enzyme and by interactions at other subsites. The most effective chloromethyl ketone elastase inhibitor found thus far is MeO-Suc-Ala-Ala-Pro-ValCH2Cl (MeO-Suc- = CH3OCOCH2CH2CO-). This will not inhibit the other major leukocyte protease, cathepsin G (see Table VI). In contrast, Z-Gly-Leu-Phe-CH2C1 (Z = C6H5CH2OCO-) inhibits cathepsin G, but not elastase. Both enzymes can be inhibited with Ac-Ala-Ala-Pr o-V alCH2Cl. [Pg.352]

Figure 3. Reaction of a serine protease with a peptide chloromethyl ketone. The side chain of the Pt residue of the inhibitor is shown interacting with the primary substrate binding subsite (SJ of the enzyme. Figure 3. Reaction of a serine protease with a peptide chloromethyl ketone. The side chain of the Pt residue of the inhibitor is shown interacting with the primary substrate binding subsite (SJ of the enzyme.

See other pages where Serine protease with peptide chloromethyl ketone is mentioned: [Pg.345]    [Pg.344]    [Pg.179]    [Pg.39]    [Pg.179]    [Pg.221]    [Pg.197]    [Pg.198]   


SEARCH



Chloromethyl

Chloromethyl peptides

Chloromethylated

Chloromethylation

Peptide chloromethyl ketones

Serin proteases

Serine protease

Serine protease with peptide

© 2024 chempedia.info