Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine protease hydrolysis

It is reasonable to inquire whether recognition of such a concept might apply to mechanistic ideas about enzyme reactions. It now appears that the stereoelectronic theory that Deslongchamps and co-workers have developed is specifically applicable to peptide hydrolyses by serine proteases. Hydrolysis of simple esters will be used first to illustrate the approach. [Pg.238]

Microbial serine proteases, such as chymotrypsin, catalyse the hydrolysis of N-acetyl-L-amino add esters (Figure A8.ll). [Pg.285]

POTENTIAL SURFACES FOR AMIDE HYDROLYSIS IN SOLUTION AND IN SERINE PROTEASES... [Pg.173]

Acylation reaction, 171 Alanine, structure of, 110 Alcohol dehydrogenase, 205 Amide hydrolysis, see also Serine proteases Trypsin... [Pg.229]

Potential Surfaces for Amide Hydrolysis in Solution and in Serine Proteases, 173... [Pg.242]

FIGURE 11.2 Hydrolysis of esters and peptides by serine proteases reaction scheme (a) and mechanism of action (b) (after Polgar15). (a) ES, noncovalent enzyme-substrate complex (Michaelis complex) EA, the acyl-enzyme PI and P2, the products, (b) X = OR or NHR (acylation) X = OH (deacylation). [Pg.360]

S. A. Bizzozero, H. Dutler, Stereochemical Aspects of Peptide Hydrolysis Catalyzed by Serine Proteases of the Chymotrypsin Type , Bioorg. Chem. 1981, 10, 46 - 62 ... [Pg.92]

The arrangement of S965, H746, and the oxyanion hole suggests that the classical steps of peptide-bond hydrolysis follow the sequence of the trypsin-like serine proteases, namely the formation of the tetrahedral adduct, the acyl-enzyme complex, and hydrolysis. Tricorn has been shown to exhibit both tryptic and chymotryp-tic specificities (Tamura et al. 1996a). The X-ray structure reveals that specificity for basic PI residues is conferred by D936 which is provided by the diad-related subunit (see Figures 10.9 and 10.10). [Pg.268]

Fig. 2. The generally accepted mechanism for the hydrolysis of peptide substrates by the serine proteases. The precise locations of the protons are still moot their positions here are taken from Steitz and Shullman (1982). I, Michaelis complex II and V, tetrahedral intermediates III and IV, acyl-enzyme VI, product complex. Fig. 2. The generally accepted mechanism for the hydrolysis of peptide substrates by the serine proteases. The precise locations of the protons are still moot their positions here are taken from Steitz and Shullman (1982). I, Michaelis complex II and V, tetrahedral intermediates III and IV, acyl-enzyme VI, product complex.
The hydrolysis of peptide bonds catalyzed by the serine proteases has been the reaction most extensively studied by low-temperature trapping experiments. The reasons for this preference are the ease of availability of substrates and purified enzymes, the stability of the proteins to extremes of pH, temperature, and organic solvent, and the existence of a well-characterized covalent acyl-enzyme intermediate. Both amides and esters are substrates for the serine proteases, and a number of chromo-phoric substrates have been synthesized to simplify assay by spectrophotometric techniques. [Pg.256]

In chymotrypsin and other serine proteases the imidazole moiety of histidine acts as a general base not as a nucleophile as is probably the case in the catalysis of activated phenyl ester hydrolysis by (26). With this idea in mind, Kiefer et al. 40) studied the hydrolysis of 4-nitrocatechol sulfate in the presence of (26) since aryl sulfatase, the corresponding enzyme, has imidazole at the active center. Dramatic results were obtained. The substrate, nitrocatechol sulfate, is very stable in water at room temperature. Even the presence of 2M imidazole does not produce detectable hydrolysis. In contrast (26) cleaves the substrate at 20°C. Michaelis-Menten kinetics were obtained the second-order rate constant for catalysis by (26) is 10 times... [Pg.218]

Figure 3.3 (a) Covalent catalysis the catalytic mechanism of a serine protease. The enzyme acetylcholinesterase is chosen to illustrate the mechanism because it is an important enzyme in the nervous system. Catalysis occurs in three stages (i) binding of acetyl choline (ii) release of choline (iii) hydrolysis of acetyl group from the enzyme to produce acetate, (b) Mechanism of inhibition of serine proteases by diisopropylfluorophosphonate. See text for details. [Pg.40]

Note that penicillins and structurally related antibiotics are frequently deactivated by the action of bacterial -lactamase enzymes. These enzymes also contain a serine residue in the active site, and this is the nucleophile that attacks and cleaves the P-lactam ring (see Box 7.20). The P-lactam (amide) linkage is hydrolysed, and then the inactivated penicillin derivative is released from the enzyme by further hydrolysis of the ester linkage, restoring the functional enzyme. The mode of action of these enzymes thus closely resembles that of the serine proteases there is further discussion in Box 7.20. [Pg.523]

This serine-protease [EC 3.4.21.87] catalyzes the hydrolysis of peptide bonds at Xaa—Yaa in which there is a preference for arginyl or lysyl residues at Xaa and Yaa. [Pg.522]

The optimum yield of a condensation product is obtained at the pH where Ka has a maximum. For peptide synthesis with serine proteases this coincides with the pH where the enzyme kinetic properties have their maxima. For the synthesis of penicillins with penicillin amidase, or esters with serine proteases or esterases, the pH of maximum product yield is much lower than the pH optimum of the enzymes. For penicillin amidase the pH stability is also markedly reduced at pH 4-5. Thus, in these cases, thermodynamically controlled processes for the synthesis of the condensation products are not favorable. When these enzymes are used as catalysts in thermodynamically controlled hydrolysis reactions an increase in pH increases the product yield. Penicilhn hydrolysis is generally carried out at pH about 8.0, where the enzyme has its optimum. At this pH the equiUbrium yield of hydrolysis product is about 97%. It could be further increased by increasing the pH. Due to the limited stability of the enzyme and the product 6-aminopenicillanic acid at pH>8, a higher pH is not used in the biotechnological process. [Pg.369]

From study of peptides formed by partial hydrolysis of the 32P-labeled chymotrypsin, the sequence of amino acids surrounding the reactive serine was established and serine 195 was identified as the residue whose side chain hydroxyl group became phosphorylated. The same sequence Gly-Asp-Ser-Gly was soon discovered around reactive serine residues in trypsin, thrombin, elastase, and in the trypsin-like cocoonase used by silkmoths to escape from their cocoons.198 We know now that these are only a few of the enzymes in a very large family of serine proteases, most of which have related active site sequences.199 200 Among these are thrombin and other enzymes of the blood-clotting cascade (Fig. 12-17), proteases of lysosomes, and secreted proteases. [Pg.610]

Acyl-enzyme intermediates. Serine proteases are probably the most studied of any group of enzymes.229 Early work was focused on the digestive enzymes. The pseudosubstrate, p-nitrophenyl acetate, reacts with chymotrypsin at pH 4 (far below the optimum pH for hydrolysis) with rapid release of p-nitro-phenol and formation of acetyl derivative of the enzyme. [Pg.610]

The catalytic cycle. Figure 12-11 depicts the generally accepted sequence of reactions for a serine protease. If we consider both the formation and the subsequent hydrolysis of the acyl-enzyme intermediate with appropriate oxyanion intermediates, there are at least seven distinct steps. As indicated in this figure, His 57 not only accepts a proton from the hydroxyl... [Pg.613]

Some answers may be obtained from smaller bacterial, mitochondrial, and chloroplast ATP-dependent proteases. Cells of E. coli contain at least nine proteases, which have been named after the musical scale as Do, Re, Mi, Fa, So, La, Ti, Di, and Ci.450 451 Most are serine proteases but two, Ci and Pi, are metalloproteins. Protease La (Lon protease, encoded by gene Ion) has attracted particular attention because the hydrolysis of two molecules of ATP occurs synchronously with cleavage of a peptide linkage in the protein chain 452 This enzyme, as well as protease Ti (more often called CIp, for caseinolytic protease),451453 454 is ATP-dependent.451... [Pg.628]

The mammalian serine proteases have a common tertiary structure as well as a common function. The enzymes are so called because they have a uniquely reactive serine residue that reacts irreversibly with organophosphates such as diisopropyl fluorophosphate. The major pancreatic enzymes—trypsin, chymotrypsin, and elastase—are kinetically very similar, catalyzing the hydrolysis of peptides... [Pg.24]

The currently accepted mechanism for the hydrolysis of amides and esters catalyzed by the archetypal serine protease chymotrypsin involves the initial formation of a Michaelis complex followed by the acylation of Ser-195 to give an acylenzyme (Chapter 1) (equation 7.1). Much of the kinetic work with the enzyme has been directed toward detecting the acylenzyme. This work can be used to illustrate the available methods that are based on pre-steady state and steady state kinetics. The acylenzyme accumulates in the hydrolysis of activated or specific ester substrates (k2 > k3), so that the detection is relatively straightforward. Accumulation does not occur with the physiologically relevant peptides (k2 < k3), and detection is difficult. [Pg.120]

The hydrolysis of ester or amide substrates catalyzed by the serine proteases involves an acylenzyme intermediate in which the hydroxyl group of Ser-195 is... [Pg.574]


See other pages where Serine protease hydrolysis is mentioned: [Pg.204]    [Pg.204]    [Pg.46]    [Pg.310]    [Pg.260]    [Pg.204]    [Pg.110]    [Pg.359]    [Pg.364]    [Pg.369]    [Pg.105]    [Pg.29]    [Pg.301]    [Pg.315]    [Pg.190]    [Pg.343]    [Pg.257]    [Pg.141]    [Pg.250]    [Pg.119]    [Pg.28]    [Pg.87]    [Pg.1842]    [Pg.236]    [Pg.250]    [Pg.362]    [Pg.110]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Serin proteases

Serine protease

© 2024 chempedia.info