Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation cross flow

In situations where a low concentration of suspended solids needs to be separated from a liquid, then cross-flow filtration can be used. The most common design uses a porous tube. The suspension is passed through the tube at high velocity and is concentrated as the liquid flows through the porous medium. The turbulent flow prevents the formation of a filter cake, and the solids are removed as a more concentrated slurry. [Pg.74]

A. E. Ostermann and E. Pfleiderer, "AppHcation of the Principle of Cross-Flow in SoHd/Liquid Microfiltration," in the Proceedings of the Symposium on Economic Optimi tion Strategy in SolidjFiquid Separation Processes, SocifitH Beige de Filtration, Louvaine-la-Neuve, Belgium, Nov. 1981, pp. 123-138. [Pg.415]

Many industrial separations require a series of columns that are connected in specific ways. Some distillation programs can model such a system as a hypothetical single column with arbitrary cross-flows and connections and then carry out the distillation calculations for the modeled hypothetical column. Alternatively, such a system can be modeled as a process flow sheet using a process simulator. [Pg.78]

Cross-flow-elec trofiltratiou (CF-EF) is the multifunctional separation process which combines the electrophoretic migration present in elec trofiltration with the particle diffusion and radial-migration forces present in cross-flow filtration (CFF) (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears later in this section) in order to reduce further the formation of filter cake. Cross-flow-electrofiltratiou can even eliminate the formation of filter cake entirely. This process should find application in the filtration of suspensions when there are charged particles as well as a relatively low conduc tivity in the continuous phase. Low conductivity in the continuous phase is necessary in order to minimize the amount of elec trical power necessaiy to sustain the elec tric field. Low-ionic-strength aqueous media and nonaqueous suspending media fulfill this requirement. [Pg.2008]

Cross Flow Most membrane processes are operated in cross flow, and only a few have the option to operate in the more conventional dead-end flow. In cross flow, the retentate passes parallel to the separating membrane, often at a velocity an order of magnitude higher than the velocity of the stream passing through the membrane. Microfiltration is the major membrane process in which a significant number if apphcations may be run with dead-end flow. [Pg.2025]

Process Description Microfiltration (MF) separates particles from true solutions, be they liquid or gas phase. Alone among the membrane processes, microfiltration may be accomplished without the use of a membrane. The usual materi s retained by a microfiltra-tion membrane range in size from several [Lm down to 0.2 [Lm. At the low end of this spectrum, very large soluble macromolecules are retained by a microfilter. Bacteria and other microorganisms are a particularly important class of particles retained by MF membranes. Among membrane processes, dead-end filtration is uniquely common to MF, but cross-flow configurations are often used. [Pg.2043]

Cassettes Cassette is a term used to describe two different cross-flow membrane devices. The less-common design is a usually large stack of membrane separated by a spacer, with flow moving in parallel across the membrane sheets. This variant is sometimes referred to as a flat spiral, since there is some similarity in the way feed and permeate are handled. The more common cassette has long been popular in the pharmaceutical and biotechnical field. It too is a stack of flat-sheet membranes, but the membrane is usually connected so that the feed flows across the membrane elements in series to achieve higher conversion per pass. Their popularity stems from easy direct sc e-up from laboratoiy to plant-scale equipment. Their hmitation is that fluid management is inherently veiy hmited and inefficient. Both types of cassette are veiy compact and capable of automated manufacture. [Pg.2046]

Filtration Cross-flow filtration (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears earlier in this section) relies on the retention of particles by a membrane. The driving force for separation is pressure across a semipermeable membrane, while a tangential flow of the feed stream parallel to the membrane surface inhibits solids settling on and within the membrane matrix (Datar and Rosen, loc. cit.). [Pg.2058]

The factors to consider in the selection of cross-flow filtration include the cross-flow velocity, the driving pressure, the separation characteristics of the membrane (permeability and pore size), size of particulates relative to the membrane pore dimensions, and the hydrodynamic conditions within the flow module. Again, since particle-particle and particle-membrane interactions are key, broth conditioning (ionic strength, pH, etc.) may be necessary to optimize performance. [Pg.2058]

A membrane is defined as an intervening phase separating two phases forming an active or passive barrier to the transport of matter. Membrane processes can be operated as (1) Dead-end filtration and (2) Cross-flow filtration. Dead-end filtration refers to filtration at one end. A problem with these systems is frequent membrane clogging. Cross-flow filtration overcomes the problem of membrane clogging and is widely used in water and wastewater treatment. [Pg.335]

A fume cupboard should not be positioned where the only escape route from the area would necessitate passing directly in front of the fume cupboard. Siting with respect to makeup air grills should be considered carefully (see above on drafts and cross-flows) and a minimum separation distance of 1500 mm is recommended. ... [Pg.890]

In general, fungal mycelia are filtered relatively easily, because mycelia filter cake has sufficiently large porosity. Yeast and bacteiia are much more difficult to handle because of thefr small size. Alternative filtration methods, which eliminate the filter cake, are becoming more acceptable for bacterial and yeast separation. Micro-filtration is achieved by developing large cross-flow fluid velocities across the filter surface while the velocity vector normal to the surface is relatively small. Build up of filter cake and problems of high cake resistance are therefore prevented. Micro-filtration is not discussed in this section. [Pg.175]

Membrane modules can be configured in various ways to produce a plant of the required separation capability. A simple batch recirculation system has already been described in cross-flow filtration. Such an arrangement is most suitable for small-scale batch operation, but larger scale plants will operate as feed and bleed or continuous single pass operation (Figure 16.20). [Pg.372]

Nanoparticles may be purified from the ME constituting components (surfactant and organic phase) via freeze-dr5nng [18] or a cross-flow ultrafiltration [19]. However, the use of isolated nanoparticles as the catalysts requires their separation from the reaction mixture after reaction via ultrafiltration. [Pg.293]

Pharmaceutical Removal of suspended matter is a frequent application for MF. Processes may be either clarification, in which the main product is a clarified liquid, or solids recovery. Separating cells or their fragments from broth is the most common application. Clarification of the broth in preparation for product recovery is the usual objective, but the primary goal may be recovery of cells. Cross-flow microfiltration competes w l with centrifugation, conventional filtration by rotary vacuum filter or filter press and decantation. MF delivers a cleaner permeate, an uncontaminated, concentrated cell product... [Pg.56]

Initial tests of Brownian pumping required the measurement of Th in colloids separated from seawater samples. " Th proved to be an especially useful tracer of colloidal uptake of metal species because of its constant source and relative abundance. Baskaran et al. (1992) and Moran and Buesseler (1992) used cross-flow filtration to separate the colloidal fraction and both studies reported significant (up to 78% of total) " Th in this fraction. Subsequent work largely supported these observations (Moran and Buesseler 1993 Huh and Prahl 1995) and suggested the importance of colloidal organic matter in scavenging Th (Niven et al. 1995). [Pg.468]


See other pages where Separation cross flow is mentioned: [Pg.246]    [Pg.44]    [Pg.50]    [Pg.412]    [Pg.103]    [Pg.436]    [Pg.336]    [Pg.86]    [Pg.1290]    [Pg.2009]    [Pg.2046]    [Pg.2046]    [Pg.2050]    [Pg.2057]    [Pg.2057]    [Pg.255]    [Pg.281]    [Pg.282]    [Pg.823]    [Pg.181]    [Pg.366]    [Pg.354]    [Pg.983]    [Pg.984]    [Pg.985]    [Pg.986]    [Pg.268]    [Pg.22]    [Pg.57]    [Pg.61]    [Pg.41]    [Pg.468]   
See also in sourсe #XX -- [ Pg.139 , Pg.153 ]




SEARCH



Cross flow

Crossing separation

Flow separators

Separated flow

© 2024 chempedia.info