Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separating system, model

The above example is a simple one, and it can be seen that the individual items form part of the chain in the production system, in which the items are dependent on each other. For example, the operating pressure and temperature of the separators will determine the inlet conditions for the export pump. System modelling may be performed to determine the impact of a change of conditions in one part of the process to the overall system performance. This involves linking together the mathematical simulation of the components, e.g. the reservoir simulation, tubing performance, process simulation, and pipeline behaviour programmes. In this way the dependencies can be modelled, and sensitivities can be performed as calculations prior to implementation. [Pg.342]

Within this general framework there have been many different systems modelled and the dynamical, statistical prefactors have been calculated. These are detailed in [42]. For a binary mixture, phase separating from an initially metastable state, the work of Langer and Schwartz [48] using die Langer theory [47] gives the micleation rate as... [Pg.755]

An alternative way of deriving the BET equation is to express the problem in statistical-mechanical rather than kinetic terms. Adsorption is explicitly assumed to be localized the surface is regarded as an array of identical adsorption sites, and each of these sites is assumed to form the base of a stack of sites extending out from the surface each stack is treated as a separate system, i.e. the occupancy of any site is independent of the occupancy of sites in neighbouring stacks—a condition which corresponds to the neglect of lateral interactions in the BET model. The further postulate that in any stack the site in the ith layer can be occupied only if all the underlying sites are already occupied, corresponds to the BET picture in which condensation of molecules to form the ith layer can only take place on to molecules which are present in the (i — l)th layer. [Pg.45]

Methods for determining the drop in pressure start with a physical model of the two-phase system, and the analysis is developed as an extension of that used for single-phase flow. In the separated flow model the phases are first considered to flow separately and their combined effect is then examined. [Pg.187]

Although the methods developed here can be used to predict liquid-liquid equilibrium, the predictions will only be as good as the coefficients used in the activity coefficient model. Such predictions can be critical when designing liquid-liquid separation systems. When predicting liquid-liquid equilibrium, it is always better to use coefficients correlated from liquid-liquid equilibrium data, rather than coefficients based on the correlation of vapor-liquid equilibrium data. Equally well, when predicting vapor-liquid equilibrium, it is always better to use coefficients correlated to vapor-liquid equilibrium data, rather than coefficients based on the correlation of liquid-liquid equilibrium data. Also, when calculating liquid-liquid equilibrium with multicomponent systems, it is better to use multicomponent experimental data, rather than binary data. [Pg.72]

Separation systems include in their mathematical models various vapor-liquid equilibrium (VLE) correlations that are specific to the binary or multicomponent system of interest. Such correlations are usually obtained by fitting VLE data by least squares. The nature of the data can depend on the level of sophistication of the experimental work. In some cases it is only feasible to measure the total pressure of a system as a function of the liquid phase mole fraction (no vapor phase mole fraction data are available). [Pg.451]

Each component has its own model. Because some of them are more general than required for this system—for example, the Calendar associates any Strings with dates and is not specific to Instructors and CourseRuns—not all of them use the same vocabulary. But we can retrieve or map the separate components models back to the system model. For example, each SeminarSystem lnstructor is primarily represented in Seminar Sys 1 components by a String, which is the Instructor s name. To obtain the associations of a SeminarSystem Instructor given a String n, use these definitions ... [Pg.48]

Separate roles. Make separate context models for the system as used by different groups of collaborators. In general the separation works best by considering the abstract collaborations, rather than individual collaborators. [Pg.614]

The TLC analysis of flavonoids was performed not only in the extract of medicinal plants and model mixtures but also in various other matrices. Thus, phenolic compounds in red wines have also been determined by TLC. Wine samples were acidified to pH 2.0 with 0.1 M HC1 and 25 ml of acidified wine was extracted with 2 X 25 ml of diethyl ether. The organic phase was evaporated to dryness and redissolved in 5.0 ml of methanol. Separation of phenolic compounds was performed on silica layers using 11 different mobile phases. In order to find the best separation system, information theory and cluster analysis was applied. The RF values determined in 11 mobile phases are compiled in Table 2.45. [Pg.157]

Mittal, et al. reported the proximate chemical composition of a number of different samples collected in the model card room at North Carolina State University (31). Samples in this study included a coarse trash which was comprised of relatively large, mostly lint-free particulate matter that fell to the floor of the condenser filter chamber in a Pneumafil filter system (Model FCV8-3MTRK) (31). The second sample set was separated by the sonic sifting procedure from the condenser trash. Another set of samples was collected from an electrostatic precipitator located in the air conditioning return of the model card room. Results of ash analyses are shown in Table VII. [Pg.321]

Non-Random Systems. As pointed out by Cahn and Hilliard(10,11), phase separation in the thermodynamically unstable region may lead to a non-random morphology via spinodal decomposition. This model is especially convenient for discussing the development of phase separating systems. In the linearized Cahn-Hilliard approach, the free energy of an inhomogeneous binary mixture is taken as ... [Pg.154]

In our review, we distinguished two types of DNA-related donor-acceptor systems models where donor and acceptor interact directly, and models where they are separated by intervening base pairs. [Pg.65]

This chapter introduces the reader to elementary concepts of modeling, generic formulations for nonlinear and mixed integer optimization models, and provides some illustrative applications. Section 1.1 presents the definition and key elements of mathematical models and discusses the characteristics of optimization models. Section 1.2 outlines the mathematical structure of nonlinear and mixed integer optimization problems which represent the primary focus in this book. Section 1.3 illustrates applications of nonlinear and mixed integer optimization that arise in chemical process design of separation systems, batch process operations, and facility location/allocation problems of operations research. Finally, section 1.4 provides an outline of the three main parts of this book. [Pg.3]


See other pages where Separating system, model is mentioned: [Pg.380]    [Pg.380]    [Pg.228]    [Pg.508]    [Pg.2016]    [Pg.262]    [Pg.281]    [Pg.89]    [Pg.52]    [Pg.130]    [Pg.416]    [Pg.366]    [Pg.29]    [Pg.250]    [Pg.48]    [Pg.142]    [Pg.37]    [Pg.30]    [Pg.164]    [Pg.151]    [Pg.80]    [Pg.198]    [Pg.268]    [Pg.47]    [Pg.458]    [Pg.199]    [Pg.302]    [Pg.387]    [Pg.129]    [Pg.141]    [Pg.244]    [Pg.12]    [Pg.110]    [Pg.62]    [Pg.227]    [Pg.484]    [Pg.71]    [Pg.146]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Example. Modeling a separation system

Mathematical Modeling of Structure Evolution in Phase Separating Polymer Systems

Phase separating/ordering systems model)

Separable systems

Separation models

Separator Model

© 2024 chempedia.info