Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-motion Structure factor, dynamic

Fig. 4.20 Temperature dependence of the average relaxation times of PIB results from rheological measurements [34] dashed-dotted line), the structural relaxation as measured by NSE at Qmax (empty circle [125] and empty square), the collective time at 0.4 A empty triangle), the time corresponding to the self-motion at Q ax empty diamond),NMR dotted line [136]), and the application of the Allegra and Ganazzoli model to the single chain dynamic structure factor in the bulk (filled triangle) and in solution (filled diamond) [186]. Solid lines show Arrhenius fitting curves. Dashed line is the extrapolation of the Arrhenius-like dependence of the -relaxation as observed by dielectric spectroscopy [125]. (Reprinted with permission from [187]. Copyright 2003 Elsevier)... Fig. 4.20 Temperature dependence of the average relaxation times of PIB results from rheological measurements [34] dashed-dotted line), the structural relaxation as measured by NSE at Qmax (empty circle [125] and empty square), the collective time at 0.4 A empty triangle), the time corresponding to the self-motion at Q ax empty diamond),NMR dotted line [136]), and the application of the Allegra and Ganazzoli model to the single chain dynamic structure factor in the bulk (filled triangle) and in solution (filled diamond) [186]. Solid lines show Arrhenius fitting curves. Dashed line is the extrapolation of the Arrhenius-like dependence of the -relaxation as observed by dielectric spectroscopy [125]. (Reprinted with permission from [187]. Copyright 2003 Elsevier)...
Fig. 5.23 Time evolution of the three functions investigated for PIB at 390 K and Q=0.3 A"h pair correlation function (empty circle) single chain dynamic structure factor (empty diamond) and self-motion of the protons (filled triangle). Solid lines show KWW fitting curves. (Reprinted with permission from [187]. Copyright 2003 Elsevier)... Fig. 5.23 Time evolution of the three functions investigated for PIB at 390 K and Q=0.3 A"h pair correlation function (empty circle) single chain dynamic structure factor (empty diamond) and self-motion of the protons (filled triangle). Solid lines show KWW fitting curves. (Reprinted with permission from [187]. Copyright 2003 Elsevier)...
Obviously, if found experimentally, the exponent -2 is only a sign of reptation motion but not a sufficient condition for it. Thus, in order to prove that reptation is a really dominant mode of chain motion in polymer concentrates, we have to test it not only with self-diffusion but also with other physical properties which reflect the local motion of polymer chains. One such property is the (coherent) dynamic structure factor 5(fc, r) (see Section 3.2 of Chapter 4 for its definition). In fact, it was predicted theoretically [45-47] that the k dependence of its decay with r in the range of k defined by... [Pg.261]

To make the significance of the NMR technique as an experimental tool in surfactant science more apparent, it is important to compare the strengths and the weaknesses of the NMR relaxation technique in relation to other experimental techniques. In comparison with other experimental techniques to study, for example, microemulsion droplet size, the NMR relaxation technique has two major advantages, both of which are associated with the fact that it is reorientational motions that are measured. One is that the relaxation rate, i.e., R2, is sensitive to small variations in micellar size. For example, in the case of a sphere, the rotational correlation time is proportional to the cube of the radius. This can be compared with the translational self-diffusion coefficient, which varies linearly with the radius. The second, and perhaps the most important, advantage is the fact that the rotational diffusion of particles in solution is essentially independent of interparticle interactions (electrostatic and hydrodynamic). This is in contrast to most other techniques available to study surfactant systems or colloidal systems in general, such as viscosity, collective and self-diffusion, and scattered light intensity. A weakness of the NMR relaxation approach to aggregate size determinations, compared with form factor determinations, would be the difficulties in absolute calibration, since the transformation from information on dynamics to information on structure must be performed by means of a motional model. [Pg.339]


See other pages where Self-motion Structure factor, dynamic is mentioned: [Pg.245]    [Pg.7]    [Pg.24]    [Pg.70]    [Pg.117]    [Pg.207]    [Pg.314]    [Pg.227]    [Pg.285]    [Pg.287]    [Pg.295]    [Pg.320]    [Pg.162]    [Pg.330]    [Pg.120]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Dynamic motion

Dynamic structure factor

Dynamical structure factor

Self structures

Self-dynamic structure factor

Structural dynamics

Structural factors

Structure dynamics

Structure factor

© 2024 chempedia.info