Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self interfaces

The power of optical spectroscopies is that they are often much better developed than their electron-, ion- and atom-based counterparts, and therefore provide results that are easier to interpret. Furtlienuore, photon-based teclmiques are uniquely poised to help in the characterization of liquid-liquid, liquid-solid and even solid-solid interfaces generally inaccessible by other means. There has certainly been a renewed interest in the use of optical spectroscopies for the study of more realistic systems such as catalysts, adsorbates, emulsions, surfactants, self-assembled layers, etc. [Pg.1779]

Mortensen K 1998 Structural properties of self-assembled polymeric micelles Curr. Opin. Colloid Interface Sol. 3 12-19... [Pg.2607]

Manne S 1997 Visualizing self-assembly Force microscopy of ionic surfactant aggregates at solid-liquid interfaces Prog. Colloid Polym. Sol. 103 226-33... [Pg.2607]

Deiamarche E, Michei B, Biebuyck FI A and Gerber C 1996 Golden interfaces the surface of self-assembled monolayers Adv. Mater. 8 719-29... [Pg.2636]

Riste T and Sherrington D (eds) 1996 Physics of Biomaterials Fluctuations, Self-assembly and vo/uf/o/ (Dordrecht Kluwer) An excellent modern account of the exciting interface between biology, physics and chemistry. [Pg.2853]

More elaborate scheme.s can he envisaged. Thus, a. self-organizing neural network as obtained by the classification of a set of chemical reactions as outlined in Section 3,5 can be interfaced with the EROS system to select the reaction that acmaliy occurs from among various reaction alternatives. In this way, knowledge extracted from rcaetion databases can be interfaced with a reaction prediction system,... [Pg.552]

Our reviewer felt the molecule builder was easy to use. It is set up for organic molecules. Specialized building modes are available for peptides, nucleotides, and carbohydrates. It is also possible to impose constraints on the molecular geometry. Functions are accessed via a separate window with buttons labeled with abbreviated names. This layout is convenient to use, but not completely self-explanatory. The program is capable of good-quality rendering. At the time of this book s publication, a new three-dimensional graphic user interface called Maestro was under development. [Pg.345]

The size-exclusion and ion-exchange properties of zeoHtes have been exploited to cause electroactive species to align at a zeoHte—water interface (233—235). The zeoHte thus acts as a template for the self-organization of electron transfer (ET) chains that may find function as biomimetic photosynthetic systems, current rectifiers, and photodiodes. An example is the three subunit ET chain comprising Fe(CN)g anion (which is charge-excluded from the anionic zeoHte pore stmcture), Os(bipyridine)3 (which is an interfacial cation due to size exclusion of the bipyridine ligand), and an intrazeoHte cation (trimethylamino)methylferrocene (F J ). A cationic polymer bound to the (CN) anion holds the self-assembled stmcture at an... [Pg.209]

Vascular access ports typically consist of a self-sealing siUcone septum within a rigid housing which is attached to a radiopaque catheter (see Radiopaques). The catheter must be fabricated from a low modulus elastomeric polymer capable of interfacing with both soft tissue and the cardiovascular environment. A low modulus polyurethane-based elastomer is preferred to ensure minimal trauma to the fragile vein. [Pg.184]

The monolayer resulting when amphiphilic molecules are introduced to the water—air interface was traditionally called a two-dimensional gas owing to what were the expected large distances between the molecules. However, it has become quite clear that amphiphiles self-organize at the air—water interface even at relatively low surface pressures (7—10). For example, x-ray diffraction data from a monolayer of heneicosanoic acid spread on a 0.5-mM CaCl2 solution at zero pressure (11) showed that once the barrier starts moving and compresses the molecules, the surface pressure, 7T, increases and the area per molecule, M, decreases. The surface pressure, ie, the force per unit length of the barrier (in N/m) is the difference between CJq, the surface tension of pure water, and O, that of the water covered with a monolayer. Where the total number of molecules and the total area that the monolayer occupies is known, the area per molecules can be calculated and a 7T-M isotherm constmcted. This isotherm (Fig. 2), which describes surface pressure as a function of the area per molecule (3,4), is rich in information on stabiUty of the monolayer at the water—air interface, the reorientation of molecules in the two-dimensional system, phase transitions, and conformational transformations. [Pg.531]

Patterns of ordered molecular islands surrounded by disordered molecules are common in Langmuir layers, where even in zero surface pressure molecules self-organize at the air—water interface. The difference between the two systems is that in SAMs of trichlorosilanes the island is comprised of polymerized surfactants, and therefore the mobihty of individual molecules is restricted. This lack of mobihty is probably the principal reason why SAMs of alkyltrichlorosilanes are less ordered than, for example, fatty acids on AgO, or thiols on gold. The coupling of polymerization and surface anchoring is a primary source of the reproducibihty problems. Small differences in water content and in surface Si—OH group concentration may result in a significant difference in monolayer quahty. Alkyl silanes remain, however, ideal materials for surface modification and functionalization apphcations, eg, as adhesion promoters (166—168) and boundary lubricants (169—171). [Pg.538]

The advantage of the LB technique is that it allows systematic studies of 2-D organization, both before and after transfer from the air—water interface onto a soHd substrate. However, the coupling of 3-D self-organization of macromolecules in solution with organization at a soHd surface may best be achieved using the self-assembly technique. [Pg.545]


See other pages where Self interfaces is mentioned: [Pg.203]    [Pg.406]    [Pg.730]    [Pg.733]    [Pg.1303]    [Pg.2364]    [Pg.2369]    [Pg.2369]    [Pg.2373]    [Pg.2376]    [Pg.2377]    [Pg.2378]    [Pg.2572]    [Pg.2591]    [Pg.2641]    [Pg.2866]    [Pg.2938]    [Pg.2938]    [Pg.191]    [Pg.193]    [Pg.199]    [Pg.427]    [Pg.216]    [Pg.145]    [Pg.151]    [Pg.525]    [Pg.531]    [Pg.533]    [Pg.539]    [Pg.539]    [Pg.542]    [Pg.545]    [Pg.1418]    [Pg.65]    [Pg.91]    [Pg.318]    [Pg.269]    [Pg.38]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Interfaces self-similarity

Self-Assembling Interfaces

Self-assembled amphiphiles interface techniques

Self-association at interfaces

Thermally Activated Motion of Diffuse Interfaces by Self-Diffusion

© 2024 chempedia.info