Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenium oxides and hydrides

V.3 Selenium oxides and hydrides in aqueous solution. Solid selenious acid and selenic acid. [Pg.133]

Dangerous fire hazard when exposed to heat or flame will react vigorously with powerful oxidizing agents, such as H2O2, HNO3. Dangerous forms explosive mixtures with air keep away from heat and open flame. See also SELENIUM COMPOUNDS and HYDRIDES. [Pg.746]

To meet the needs of the advanced students, preparations have now been included to illustrate, for example, reduction by lithium aluminium hydride and by the Meerwein-Ponndorf-Verley method, oxidation by selenium dioxide and by periodate, the Michael, Hoesch, Leuckart and Doebner-Miller Reactions, the Knorr pyrrole and the Hantzsch collidine syntheses, various Free Radical reactions, the Pinacol-Pinacolone, Beckmann and Arbusov Rearrangements, and the Bart and the Meyer Reactions, together with many others. [Pg.585]

The preparation of Pans-1,2-cyclohexanediol by oxidation of cyclohexene with peroxyformic acid and subsequent hydrolysis of the diol monoformate has been described, and other methods for the preparation of both cis- and trans-l,2-cyclohexanediols were cited. Subsequently the trans diol has been prepared by oxidation of cyclohexene with various peroxy acids, with hydrogen peroxide and selenium dioxide, and with iodine and silver acetate by the Prevost reaction. Alternative methods for preparing the trans isomer are hydroboration of various enol derivatives of cyclohexanone and reduction of Pans-2-cyclohexen-l-ol epoxide with lithium aluminum hydride. cis-1,2-Cyclohexanediol has been prepared by cis hydroxylation of cyclohexene with various reagents or catalysts derived from osmium tetroxide, by solvolysis of Pans-2-halocyclohexanol esters in a manner similar to the Woodward-Prevost reaction, by reduction of cis-2-cyclohexen-l-ol epoxide with lithium aluminum hydride, and by oxymercuration of 2-cyclohexen-l-ol with mercury(II) trifluoro-acetate in the presence of ehloral and subsequent reduction. ... [Pg.88]

The optimal reaction conditions for the generation of the hydrides can be quite different for the various elements. The type of acid and its concentration in the sample solution often have a marked effect on sensitivity. Additional complications arise because many of the hydrideforming elements exist in two oxidation states which are not equally amenable to borohydride reduction. For example, potassium iodide is often used to pre-reduce AsV and SbV to the 3+ oxidation state for maximum sensitivity, but this can also cause reduction of Se IV to elemental selenium from which no hydride is formed. For this and other reasons Thompson et al. [132] found it necessary to develop a separate procedure for the determination of selenium in soils and sediments although arsenic, antimony and bismuth could be determined simultaneously [133]. A method for simultaneous determination of As III, Sb III and Se IV has been reported in which the problem of reduction of Se IV to Se O by potassium iodide was circumvented by adding the potassium iodide after the addition of sodium borohydride [134], Goulden et al. [123] have reported the simultaneous determination of arsenic, antimony, selenium, tin and bismuth, but it appears that in this case the generation of arsine and stibene occurs from the 5+ oxidation state. [Pg.356]

Importantly, it also occurs naturally in several oxidation states and is, therefore, redox sensitive. Methylation and hydride formation are important, and sulfur and iron compounds play an important role in the cycling of selenium. Microbiological volatilization of organic selenium, particularly dimethyl selenide, is known to be an important factor in the loss of selenium from some selenium-rich soils and waters (Frankenberger and Arshad, 2001 Oremland, 1994). Phytoplankton can also promote the production of gaseous selenium compounds in the marine environment (Amouroux et aL, 2001). [Pg.4592]


See other pages where Selenium oxides and hydrides is mentioned: [Pg.118]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.118]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.754]    [Pg.96]    [Pg.696]    [Pg.330]    [Pg.357]    [Pg.148]    [Pg.508]    [Pg.330]    [Pg.53]    [Pg.54]    [Pg.173]    [Pg.427]    [Pg.85]    [Pg.328]    [Pg.508]    [Pg.54]    [Pg.31]    [Pg.19]   


SEARCH



Hydride oxidation

Oxidants selenium oxide

Oxides hydrides

Selenium hydrides

Selenium oxidation

Selenium oxide

© 2024 chempedia.info