Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Second-order reactions CSTR design

A Second-Order Reaction in a CSTR. For a second-order liquid-phase reaction being carried out in a CSTR, the combination of the rat law and the design equation yields... [Pg.368]

For a second-order reaction in an ideal CSTR with complete micro-mixing, the design equation for the calculation of space time is... [Pg.246]

Adams et al. (/. Catalysis 3, 379, 1964) investigated these reactions and expressed the rate of each as second order (first order with respect to each reactant). Formulate the dimensionless, reaction-based design equations for an ideal batch reactor, plug-flow reactor, and a CSTR. [Pg.120]

Design a two-phase gas-liquid CSTR for the chlorination of benzene at 55°C by calculating the total volume that corresponds to an operating point where r/X = 500 on the horizontal axis of the CSTR performance curve in Figure 24-1. The time constant for convective mass transfer in the liquid phase is r. The time constant for second-order irreversible chemical reaction in the liquid phase is If the liquid benzene feed stream is diluted with an inert, then 7 increases. The liquid-phase volumetric flow rate is 5 gal/min. The inlet molar flow rate ratio of chlorine gas to liquid benzene... [Pg.681]

Program to design batch reactor/CSTR/PFR for second-order endothermic irreversible reaction operating at adiabatic condition... [Pg.262]

The specific models we will analyse in this section are an isothermal autocatalytic scheme due to Hudson and Rossler (1984), a non-isothermal CSTR in which two exothermic reactions are taking place, and, briefly, an extension of the model of chapter 2, in which autocatalysis and temperature effects contribute together. In the first of these, chaotic behaviour has been designed in much the same way that oscillations were obtained from multiplicity with the heterogeneous catalysis model of 12.5.2. In the second, the analysis is firmly based on the critical Floquet multiplier as described above, and complex periodic and aperiodic responses are observed about a unique (and unstable) stationary state. The third scheme has coexisting multiple stationary states and higher-order periodicities. [Pg.360]

Design a two-phase gas-liquid CSTR that operates at 55°C to accomplish the liquid-phase chlorination of benzene. Benzene enters as a liquid, possibly diluted by an inert solvent, and chlorine gas is bubbled through the liquid mixture. It is only necessary to consider the first chlorination reaction because the kinetic rate constant for the second reaction is a factor of 8 smaller than the kinetic rate constant for the first reaction at 55°C. Furthermore, the kinetic rate constant for the third reaction is a factor of 243 smaller than the kinetic rate constant for the first reaction at 55°C. The extents of reaction for the second and third chlorination steps ( 2 and 3) are much smaller than the value of for any simulation (i.e., see Section 1-2.2). Chlorine gas must diffuse across the gas-liquid interface before the reaction can occur. The total gas-phase volume within the CSTR depends directly on the inlet flow rate ratio of gaseous chlorine to hquid benzene, and the impeller speed-gas sparger combination produces gas bubbles that are 2 mm in diameter. Hence, interphase mass transfer must be considered via mass transfer coefficients. The chemical reaction occurs predominantly in the liquid phase. In this respect, it is necessary to introduce a chemical reaction enhancement factor to correct liquid-phase mass transfer coefficients, as given by equation (13-18). This is accomplished via the dimensionless correlation for one-dimensional diffusion and pseudo-first-order irreversible chemical reaction ... [Pg.655]


See other pages where Second-order reactions CSTR design is mentioned: [Pg.566]    [Pg.284]    [Pg.566]    [Pg.562]    [Pg.245]    [Pg.566]    [Pg.89]    [Pg.415]    [Pg.656]    [Pg.903]    [Pg.258]    [Pg.493]    [Pg.493]    [Pg.492]    [Pg.278]    [Pg.493]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



CSTRs

Reaction second-order

Second design

Second order design

© 2024 chempedia.info