Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Second-Order Reaction Kinetics

Table 9.5. I Analytical solutions to zero-, first-, and second-order kinetic reaction equations... Table 9.5. I Analytical solutions to zero-, first-, and second-order kinetic reaction equations...
Many organic compounds can either accept or donate electrons, forming reduced or oxidized species. This is environmentally significant since the oxidized and reduced forms of an organic compound may have totally different biological and ecological properties. The rate of loss of a chemical by oxidation or reduction is generally a second-order kinetic reaction. For example, oxidation is expressed by equation (2) ... [Pg.9]

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

The reaction of MeO /MeOH with 2-Cl-5(4)-X-thiazoles (122) follows a second-order kinetic law, first order with respect to each reactant (Scheme 62) (297, 301). A remark can be made about the reactivity of the dichloro derivatives it has been pointed out that for reactions with sodium methoxide, the sequence 5>2>4 was observed for monochlorothiazole compounds (302), For 2.5-dichlorothiazole, on the contrary, the experimental data show that the 2-methoxy dehalogenation is always favored. This fact has been related to the different activation due to a substituent effect, less important from position 2 to 5 than from... [Pg.408]

The reaction exhibits second order kinetics it is first order in alkyl halide and first order in base... [Pg.214]

Overall the reaction exhibits second order kinetics Both the ester and the base are involved m the rate determining step or m a rapid step that precedes it... [Pg.853]

Two processes that are consistent with second order kinetics both involve hydrox ide ion as a nucleophile but differ in the site of nucleophilic attack One of these processes is an 8 2 reaction in which hydroxide displaces carboxylate from the alkyl group of the ester... [Pg.854]

All these facts—the observation of second order kinetics nucleophilic attack at the carbonyl group and the involvement of a tetrahedral intermediate—are accommodated by the reaction mechanism shown m Figure 20 5 Like the acid catalyzed mechanism it has two distinct stages namely formation of the tetrahedral intermediate and its subsequent dissociation All the steps are reversible except the last one The equilibrium constant for proton abstraction from the carboxylic acid by hydroxide is so large that step 4 is for all intents and purposes irreversible and this makes the overall reaction irreversible... [Pg.855]

The transfer reactions follow second-order kinetics, the general rate law being... [Pg.389]

Diels-Alder reactions with butadiene are generally thermally reversible and can proceed in both gas and Hquid phases. The reactions are exothermic and foUow second-order kinetics first-order with respect to each reactant. [Pg.343]

This development has been generalized. Results for zero- and second-order irreversible reactions are shown in Figure 10. Results are given elsewhere (48) for more complex kinetics, nonisothermal reactions, and particle shapes other than spheres. For nonspherical particles, the equivalent spherical radius, three times the particle volume/surface area, can be used for R to a good approximation. [Pg.172]

The reaction kinetics approximation is mechanistically correct for systems where the reaction step at pore surfaces or other fluid-solid interfaces is controlling. This may occur in the case of chemisorption on porous catalysts and in affinity adsorbents that involve veiy slow binding steps. In these cases, the mass-transfer parameter k is replaced by a second-order reaction rate constant k. The driving force is written for a constant separation fac tor isotherm (column 4 in Table 16-12). When diffusion steps control the process, it is still possible to describe the system hy its apparent second-order kinetic behavior, since it usually provides a good approximation to a more complex exact form for single transition systems (see Fixed Bed Transitions ). [Pg.1514]

The concerted displacement mechanism implies both kinetic and stereochemical consequences. The reaction will exhibit second-order kinetics, first-order in both reactant... [Pg.268]

The points that we have emphasized in this brief overview of the S l and 8 2 mechanisms are kinetics and stereochemistry. These features of a reaction provide important evidence for ascertaining whether a particular nucleophilic substitution follows an ionization or a direct displacement pathway. There are limitations to the generalization that reactions exhibiting first-order kinetics react by the Sj l mechanism and those exhibiting second-order kinetics react by the 8 2 mechanism. Many nucleophilic substitutions are carried out under conditions in which the nucleophile is present in large excess. When this is the case, the concentration of the nucleophile is essentially constant during die reaction and the observed kinetics become pseudo-first-order. This is true, for example, when the solvent is the nucleophile (solvolysis). In this case, the kinetics of the reaction provide no evidence as to whether the 8 1 or 8 2 mechanism operates. [Pg.269]

An example with the characteristics of the coupled displacement is the reaction of azide ion with substituted 1-phenylethyl chlorides. Although the reaction exhibits second-order kinetics, it has a substantially negative p value, indicative of an electron deficiency at the transition state. The physical description of this type of activated complex is the exploded S 2 transition state. [Pg.275]

TWo types of rate expressions have been found to describe the kinetics of most aromatic nitration reactions. With relatively unreactive substrates, second-order kinetics, first-order in the nitrating reagent and first-order in the aromatic, are observed. This second-order relationship corresponds to rate-limiting attack of the electrophile on the aromatic reactant. With more reactive aromatics, this step can be faster than formation of the active electrq)hile. When formation of the active electrophile is the rate-determining step, the concentration of the aromatic reactant no longer appears in the observed rate expression. Under these conditions, different aromatic substrates undergo nitration at the same rate, corresponding to the rate of formation of the active electrophile. [Pg.554]

Molecular chlorine is believed to be the active electrophile in uncatalyzed chlorination of aromatic compounds. Simple second-order kinetics are observed in acetic acid. The reaction is much slower in nonpolar solvents such as dichloromethane and carbon tetrachloride. Chlorination in nonpolar solvents is catalyzed by added acid. The catalysis by acids is probably the result of assistance by proton transfer during the cleavage of the Cl-Cl bond. ... [Pg.576]

The kinetics of reaction of free radical chain reactions are complicated compared to the second-order kinetics of epoxy and urethane adhesives. Many of these complications offer practical advantages to the process of using acrylic adhesives. [Pg.827]

Equation 5-247 is a polynomial, and the roots (C ) are determined using a numerical method such as the Newton-Raphson as illustrated in Appendix D. For second order kinetics, the positive sign (-r) of the quadratic Equation 5-245 is chosen. Otherwise, the other root would give a negative concentration, which is physically impossible. This would also be the case for the nth order kinetics in an isothermal reactor. Therefore, for the nth order reaction in an isothermal CFSTR, there is only one physically significant root (0 < C < C g) for a given residence time f. [Pg.338]

Results of the intermediate conversions in a reactor train of CFSTRs involving the second order irreversible reaction kinetics A + B products... [Pg.348]

The reaction is based on an early observation by Angeli and Ahrens that Piloty s acid converted aldehydes to hydroxamic acids, and this has formed the basis of the Angeli-Rimini aldehyde test. Di Maio and Tardella propose the above reaction sequence, consistent with the observed second-order kinetics. The possibility that benzenesulfon-hydroxamic acid would decompose in alkali to give nitroxyl (HNO)... [Pg.218]

Het = heteroaryl residue] follow second-order kinetics, first order with respect to each reactant. Regular kinetics of this kind are also observed in the reaction of sodium arylsulfide in methanol provided that no free thiol is present (see Section II,D, l,c). As to other heterocyclic systems, A -oxides and bromofuran derivatives show similar kinetic behavior. [Pg.291]

Reactions with uncharged species such as amines, alcohols, and water offer frequent opportunities for investigations under pseudo-first-order conditions since many of these reagents are suitable solvents. However, the reactions with amines have often been investigated in alcohols and in non-hydroxylic solvents 27-29a have been found to follow second-order kinetics. [Pg.292]

Second-order kinetics are reported for the reactions of halogeno-quinoline iV -oxides with piperidine in several solvents and of halo-geno-nitrothiophenes with piperidine in ethanol. ... [Pg.293]

The reactions were shown, in a representative number of cases, to follow second-order kinetics and to obey the Arrhenius law. The kinetic parameters are, of course, for the entire two-stage process. [Pg.333]

A mechanism that accounts for both the inversion of configuration and the second-order kinetics that are observed with nucleophilic substitution reactions was suggested in 1937 by E. D. Hughes and Christopher Ingold, who formulated what they called the SN2 reaction—short for substitution, nucleophilic, birnolecu-lar. (Birnolecular means that two molecules, nucleophile and alkyl halide, take part in the step whose kinetics are measured.)... [Pg.363]


See other pages where Second-Order Reaction Kinetics is mentioned: [Pg.425]    [Pg.11]    [Pg.425]    [Pg.11]    [Pg.214]    [Pg.287]    [Pg.339]    [Pg.350]    [Pg.29]    [Pg.273]    [Pg.274]    [Pg.362]    [Pg.382]    [Pg.383]    [Pg.572]    [Pg.896]    [Pg.54]    [Pg.55]    [Pg.297]    [Pg.670]    [Pg.364]    [Pg.386]   
See also in sourсe #XX -- [ Pg.46 , Pg.245 ]




SEARCH



Kinetic order

Kinetic second-order

Kinetics reaction order

Kinetics second-order

Ordering kinetic

Ordering kinetics

Reaction second-order

© 2024 chempedia.info