Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Second-harmonic generation linear difference nonlinear optics

In the following sections we will first in Section 2 briefly discuss the necessary background to understand optical activity effects in linear and nonlinear optics and to illustrate the similarities and differences between both types. In Section 3 we present a more thorough analysis of nonlinear optical effects in second-harmonic generation, both from a theoretical and an experimental point of view. Section 4 deals with experimental examples that illustrate the usefulness of nonlinear optical activity in the study of chiral thin films and surfaces. Finally, in Section 5 we give an overview of the role of chirality in the field of second-order nonlinear optics and show that chiral molecules can be useful for applications in this field. [Pg.521]

Many of the different susceptibilities in Equations (2.165)-(2.167) correspond to important experiments in linear and nonlinear optics. x<(>> describes a possible zero-order (permanent) polarization of the medium j(1)(0 0) is the first-order static susceptibility which is related to the permittivity at zero frequency, e(0), while ft> o>) is the linear optical susceptibility related to the refractive index n" at frequency to. Turning to nonlinear effects, the Pockels susceptibility j(2)(- to, 0) and the Kerr susceptibility X(3 —to to, 0,0) describe the change of the refractive index induced by an externally applied static field. The susceptibility j(2)(—2to to, to) describes frequency doubling usually called second harmonic generation (SHG) and j(3)(-2 to, to, 0) describes the influence of an external field on the SHG process which is of great importance for the characterization of second-order NLO properties in solution in electric field second harmonic generation (EFISHG). [Pg.239]

Periodic oscillations in this dipole can act as a source term in the generation of new optical frequencies. Here a is the linear polarizability discussed in Exps. 29 and 35 on dipole moments and Raman spectra, while fi and x are the second- and third-order dielectric susceptibilities, respectively. The quantity fi is also called the hyperpolarizability and is the material property responsible for second-harmonic generation. Note that, since E cos cot, the S term can be expressed as -j(l + cos 2 wt). The next higher nonlinear term x is especially important in generating sum and difference frequencies when more than one laser frequency is incident on the sample. In the case of coherent anti-Stokes Raman scattering (CARS), X gives useful information about vibrational and rotational transitions in molecules. [Pg.486]

The tensors and 7 constitute the molecular origin of the second-and third-order nonlinear optical phenomena such as electro-optic Pock-els effect (EOPE), optical rectification (OR), third harmonic generation (THG), electric field induced second harmonic generation (EFI-SHG), intensity dependent refractive index (IDRI), optical Kerr effect (OKE), electric field induced optical rectification (EFI-OR). To save space we do not indicate the full expressions for and 7 related to the different second and third order processes but we introduce the notations —(Ajy,ui,cj2) and 7(—a , o i,W2,W3), where the frequency relations to be used for the various non-linear optical processes which can be obtained in the case of both static and oscillating monochromatic fields are reported in Table 1.7. [Pg.39]


See other pages where Second-harmonic generation linear difference nonlinear optics is mentioned: [Pg.520]    [Pg.527]    [Pg.554]    [Pg.567]    [Pg.39]    [Pg.200]    [Pg.75]    [Pg.110]    [Pg.383]    [Pg.16]    [Pg.296]    [Pg.105]    [Pg.432]    [Pg.79]    [Pg.564]    [Pg.5111]    [Pg.920]    [Pg.84]    [Pg.15]    [Pg.296]    [Pg.65]    [Pg.821]    [Pg.545]    [Pg.89]   


SEARCH



Difference generation

Generational differences

Harmonic generator

Harmonic second

Linear optics

Nonlinear harmonic generation

Nonlinear optical , second

Nonlinear optics second-harmonic generation

Optical generation

Optical harmonic generation

Optical second harmonic

Optical second harmonic generation

Second difference

Second harmonic generation

Second harmonic generation nonlinear optical

Second nonlinear optics

Second-harmonic generators

© 2024 chempedia.info