Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrodinger equation electronic states

The discussion in the previous sections assumed that the electron dynamics is adiabatic, i.e. the electronic wavefiinction follows the nuclear dynamics and at every nuclear configuration only the lowest energy (or more generally, for excited states, a single) electronic wavefiinction is relevant. This is the Bom-Oppenlieimer approxunation which allows the separation of nuclear and electronic coordinates in the Schrodinger equation. [Pg.2316]

The mixed, v t — % notation here has historic causes.) The Schrodinger equation is obtained from the nuclear Lagrangean by functionally deriving the latter with respect to t /. To get the exact form of the Schrodinger equation, we must let N in Eq. (95) to be equal to the dimension of the electronic Hilbert space (viz., 00), but we shall soon come to study approximations in which N is finite and even small (e.g., 2 or 3). The appropriate nuclear Lagrangean density is for an arbitrary electronic states... [Pg.146]

Let us define x (R>.) as an n-dimensional nuclear motion column vector, whose components are Xi (R i) through X (R )- The n-electronic-state nuclear motion Schrodinger equation satisfied by (Rl) can be obtained by inserting Eqs. (12)... [Pg.185]

This makes it desirable to define other representations in addition to the electronically adiabatic one [Eqs. (9)-(12)], in which the adiabatic electronic wave function basis set used in the Bom-Huang expansion (12) is replaced by another basis set of functions of the electronic coordinates. Such a different electronic basis set can be chosen so as to minimize the above mentioned gradient term. This term can initially be neglected in the solution of the / -electionic-state nuclear motion Schrodinger equation and reintroduced later using perturbative or other methods, if desired. This new basis set of electronic wave functions can also be made to depend parametrically, like their adiabatic counterparts, on the internal nuclear coordinates q that were defined after Eq. (8). This new electronic basis set is henceforth refened to as diabatic and, as is obvious, leads to an electronically diabatic representation that is not unique unlike the adiabatic one, which is unique by definition. [Pg.188]

This can be used to rewrite the diabatic nuclear motion Schrodinger equation for an incomplete set of n electronic states as... [Pg.195]

In the two-adiabatic-electronic-state Bom-Huang description of the total orbital wave function, we wish to solve the corresponding nuclear motion Schrodinger equation in the diabatic representation... [Pg.208]

It was stated above that the Schrodinger equation cannot be solved exactly for any molecular systems. However, it is possible to solve the equation exactly for the simplest molecular species, Hj (and isotopically equivalent species such as ITD" ), when the motion of the electrons is decoupled from the motion of the nuclei in accordance with the Bom-Oppenheimer approximation. The masses of the nuclei are much greater than the masses of the electrons (the resting mass of the lightest nucleus, the proton, is 1836 times heavier than the resting mass of the electron). This means that the electrons can adjust almost instantaneously to any changes in the positions of the nuclei. The electronic wavefunction thus depends only on the positions of the nuclei and not on their momenta. Under the Bom-Oppenheimer approximation the total wavefunction for the molecule can be written in the following form ... [Pg.55]

In summary, separation of variables has been used to solve the full r,0,( ) Schrodinger equation for one electron moving about a nucleus of charge Z. The 0 and (j) solutions are the spherical harmonics YL,m (0,(1>)- The bound-state radial solutions... [Pg.31]

Electronic structure methods use the laws of quantum mechanics rather than classical physics as the basis for their computations. Quantum mechanics states that the energy and other related properties of a molecule may be obtained by solving the Schrodinger equation ... [Pg.5]

Once the electronic Schrodinger equation has been solved for a large number of nuclear geometries (and possibly also for several electronic states), the PES is known. This can then be used for solving the nuclear part of the Schrodinger equation. If there are N nuclei, there are 3N coordinates that define the geometry. Of these coordinates, three describe the overall translation of the molecule, and three describe the overall rotation of the molecule with respect to three axes. Eor a linear molecule, only two coordinates are necessary for describing the rotation. This leaves 3N-6(5) coordinates to describe the internal movement of the nuclei, the vibrations, often chosen to be... [Pg.3]

Having stated the limitations (non-relativistic Hamilton operator and the Bom-Oppenheimer approximation), we are ready to consider the electronic Schrodinger equation. It can only be solved exactly for the Hj molecule, and similar one-electron systems. In the general case we have to rely on approximate (numerical) methods. By neglecting relativistic effects, we also have to introduce electron spin as an ad hoc quantum effect. Each electron has a spin quantum number of 1 /2. In the presence of an... [Pg.57]

For the sake of simplicity, we will here confine ourselves to consider a system of N electrons moving in a given nuclear framework. The stationary states of such a system are described by the solutions to the Schrodinger equation... [Pg.212]

Quantum mechanical effects—tunneling and interference, resonances, and electronic nonadiabaticity— play important roles in many chemical reactions. Rigorous quantum dynamics studies, that is, numerically accurate solutions of either the time-independent or time-dependent Schrodinger equations, provide the most correct and detailed description of a chemical reaction. While hmited to relatively small numbers of atoms by the standards of ordinary chemistry, numerically accurate quantum dynamics provides not only detailed insight into the nature of specific reactions, but benchmark results on which to base more approximate approaches, such as transition state theory and quasiclassical trajectories, which can be applied to larger systems. [Pg.2]

The simplest approach is to describe the valence electrons in the solid as a free noninteracting electron gas in a box with the volume V, as we did in Chapter 3. We have to find the ground state for the Schrodinger equation... [Pg.226]

In the asymptotic region, an electron approximately experiences a Z /f potential, where Z is the charge of the molecule-minus-one-electron ( Z = 1 in the case of a neutral molecule) and r the distance between the electron and the center of the charge repartition of the molecule-minus -one-electron. Thus the ip orbital describing the state of that electron must be close to the asymptotic form of the irregular solution of the Schrodinger equation for the hydrogen-like atom with atomic number Z. ... [Pg.30]

PES), which is different for each electronic state of the system (i.e. each eigenfunction of the BO Schrodinger equation). Based on these PESs, the nuclear Schrodinger equation is solved to define, for example, the possible nuclear vibrational levels. This approach will be used below in the description of the nuclear inelastic scattering (NIS) method. [Pg.139]

The first term on the left-hand side of equation (10.18) has the form of a Schrodinger equation for nuclear motion, so that we may identify the expansion coefficient Xk Q) as a nuclear wave function for the electronic state k. The second term couples the influence of all the other electronic states to the nuclear motion for a molecule in the electronic state k. [Pg.268]

The molecular constants o , B, Xe, D, and ae for any diatomic molecule may be determined with great accuracy from an analysis of the molecule s vibrational and rotational spectra." Thus, it is not necessary in practice to solve the electronic Schrodinger equation (10.28b) to obtain the ground-state energy o(R). [Pg.279]

Many chemical problems can be discussed by way of a knowledge of the electronic state of molecules. The electronic state of a molecular system becomes known if we solve the electronic Schrodinger equation, which can be separated from the time-independent, nonrelativistic Schrodinger equation for the whole molecule by the use of the Bom-Oppenheimer approximation D. In this approximation, the electrons are considered to move in the field of momentarily fixed nuclei. The nuclear configuration provides the parameters in the Schrodinger equation. [Pg.5]

One can expect that the electron density corresponding to the electronic state of lowest energy is roughly constant in the interior of the metal and decreases to zero outside the metal. This means that the potential seen by an electron, due to the ion cores and the other electrons, is roughly constant inside the metal, with a value significantly lower than the potential outside. The simplest model for electrons in a metal, the Sommerfeld38 model, takes this potential as -V0 inside and 0 outside. One is then led to consider the one-dimensional Schrodinger equation... [Pg.21]


See other pages where Schrodinger equation electronic states is mentioned: [Pg.1553]    [Pg.2158]    [Pg.185]    [Pg.188]    [Pg.190]    [Pg.194]    [Pg.717]    [Pg.520]    [Pg.55]    [Pg.104]    [Pg.157]    [Pg.8]    [Pg.249]    [Pg.218]    [Pg.251]    [Pg.57]    [Pg.139]    [Pg.189]    [Pg.46]    [Pg.67]    [Pg.82]    [Pg.39]    [Pg.85]    [Pg.13]    [Pg.69]    [Pg.22]    [Pg.30]    [Pg.4]   


SEARCH



Electronic Schrodinger equation

Electronic states equation

Electronic states nuclear motion Schrodinger equation

Quantum reaction dynamics, electronic states nuclear motion Schrodinger equation

Schrodinger electronic

Schrodinger equation states

© 2024 chempedia.info