Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scattering section Molecular beams

This section discusses how spectroscopy, molecular beam scattering, pressure virial coeflScients, measurements on transport phenomena and even condensed phase data can help detemiine a potential energy surface. [Pg.200]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

The molecular beam and laser teclmiques described in this section, especially in combination with theoretical treatments using accurate PESs and a quantum mechanical description of the collisional event, have revealed considerable detail about the dynamics of chemical reactions. Several aspects of reactive scattering are currently drawing special attention. The measurement of vector correlations, for example as described in section B2.3.3.5. continue to be of particular interest, especially the interplay between the product angular distribution and rotational polarization. [Pg.2085]

It is difficult to observe tliese surface processes directly in CVD and MOCVD apparatus because tliey operate at pressures incompatible witli most teclmiques for surface analysis. Consequently, most fundamental studies have selected one or more of tliese steps for examination by molecular beam scattering, or in simplified model reactors from which samples can be transferred into UHV surface spectrometers witliout air exposure. Reference [4] describes many such studies. Additional tliemes and examples, illustrating botli progress achieved and remaining questions, are presented in section C2.18.4. [Pg.2929]

One of the first approaches to study the microscopic kinetics i.e. state-to-state cross sections and reaction probabilities of a chemical reaction was the crossed molecular beam experiments. The principle of the method consists of intersecting two beams of the reactant molecules in a well-defined scattering volume and catching the product molecules in a suitable detector (Fig. 9.33). [Pg.241]

Experiments have also played a critical role in the development of potential energy surfaces and reaction dynamics. In the earliest days of quantum chemistry, experimentally determined thermal rate constants were available to test and improve dynamical theories. Much more detailed information can now be obtained by experimental measurement. Today experimentalists routinely use molecular beam and laser techniques to examine how reaction cross-sections depend upon collision energies, the states of the reactants and products, and scattering angles. [Pg.239]

Scattering of Noble-Gas Metastable Atoms in Molecular Beams velocity. The total reaction cross section is... [Pg.508]

One expects to observe a barrier resonance associated with each vibra-tionally adiabatic barrier for a given chemical reaction. Since the adiabatic theory of reactions is closely related to the rate of reaction, it is perhaps not surprising that Truhlar and coworkers [44, 55] have demonstrated that the cumulative reaction probability, NR(E), shows the influence barrier resonances. Specifically, dNR/dE shows peaks at each resonance energy and Nr(E) itself shows a staircase structure with a unit step at each QBS energy. It is a more unexpected result that the properties of the QBS seem to also imprint on other reaction observables such as the state-to-state cross sections [1,56] and even can even influence the helicity states of the products [57-59]. This more general influence of the QBS on scattering observables makes possible the direct verification of the existence of barrier-states based on molecular beam experiments. [Pg.127]

Since the critical configuration is reached when P is far from M, then the reaction will have a large cross section. The velocity of the products will be low, and the products will initially be in excited vibrational levels. The molecular beam contour diagram will show predominantly forward scattering typical of a stripping mechanism. [Pg.392]

The back reaction will have the exact reverse characteristics. The activated complex will lie in the exit valley, and reaction will be enhanced by high vibrational energy. There will be high translational energy in the products, the cross section will be small, and the molecular beam contour diagram will show predominantly backward scattering, typical of a rebound mechanism. [Pg.392]

Potential energy surfaces can be built starting from experimental data (e.g., bond strengths, geometries, infrared and fluoresence spectra, molecular beam scattering cross sections, viscosity, diffusion coefficients, line broadening... [Pg.22]

The more exoergic reaction Ba + NzO has a smaller reaction cross section ( 90 A2 or 27 A2) [347, 351] and crossed-molecular beams studies [349] show that the BaO product is backward-scattered with a large amount of internal excitation ((Fr) < 0.20). Laser-fluorescence measurements [348] of the BaO(X Z+) product for the reaction in the presence of an argon buffer gas, find population of vibrational states up to v = 32. The relative populations have a characteristic temperature of 600 K for v = 0—4 and 3600 K for v = 5—32 with evidence of non-thermal population of v — 13—16. This study also observes population of A n and a 3II states of BaO with v = 0—4. A molecular beam study of Ba + N20 with laser-induced fluorescence detection indicates that the BaO( X) product is formed with a very high rotational temperature. [Pg.423]

The present 1993 edition is a futher revision of the 1988 edition, incorporating the recent resolutions of the CGPM, the new international standards ISO-31, and new recommendations from IUPAP and from other IUPAC Commissions. Major additions have been made to the sections on Quantum Mechanics and Quantum Chemistry, Electromagnetic Radiation, and Chemical Kinetics, in order to include physical quantities used in the rapidly developing fields of quantum chemical computations, laser physics, and molecular beam scattering. New sections have been added on Dimensionless Quantities, and on Abbreviations and Acrohyms used in chemistry, and a full subject index has been added to the previous symbol index. [Pg.168]


See other pages where Scattering section Molecular beams is mentioned: [Pg.201]    [Pg.908]    [Pg.2059]    [Pg.2070]    [Pg.2080]    [Pg.2115]    [Pg.2116]    [Pg.7]    [Pg.376]    [Pg.157]    [Pg.45]    [Pg.60]    [Pg.68]    [Pg.88]    [Pg.140]    [Pg.411]    [Pg.189]    [Pg.345]    [Pg.206]    [Pg.243]    [Pg.345]    [Pg.367]    [Pg.490]    [Pg.495]    [Pg.393]    [Pg.164]    [Pg.224]    [Pg.127]    [Pg.160]    [Pg.30]    [Pg.143]    [Pg.251]    [Pg.405]    [Pg.453]    [Pg.109]   


SEARCH



Beam scattering

Molecular beam

Molecular beam scattering

Molecular scattering

© 2024 chempedia.info