Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SAMPLING MODES IN RAMAN SPECTROSCOPY

In a further study of the compression behavior of Siisg sample we used Raman spectroscopy in the DAC [66]. The guest-free elemental polymorph with space group Fd3m and 34 atoms in the corresponding primitive unit cell gives rise to zone center vibrational modes ... [Pg.114]

The species S3 (absorbing at 420 nm) and S4 (absorbing at 530 nm) have been detected by reflection spectra in the condensate but the formation of S4 is unexplained [16]. S3 and SO2 have also been observed by Raman spectroscopy in such samples [15] (the expected S4 Raman line at 678 cm was probably obscured by the SS stretching mode of S2O at 673 cm but a shoulder at the high-frequency side of the S2O line indicates that some S4 may have been present). While the reddish colors turn yellow on warming at about -120 °C, the sulfur radicals could be observed by ESR spectroscopy up to 0 °C [10]. If the condensation of S2O gas is performed very slowly at -196 °C the condensate is almost colorless and turns red only if the temperature is allowed to increase slowly. Hence, it has been suspected that S2O is actually colorless like SO2. [Pg.206]

In transmission mode a spatial resolution of about 15-20 pm can be achieved with infrared microscopes [32]. This is generally sufficient to properly identify such as small impurities, inclusions, gels or single components of multilaminate foils. Similar to Raman spectroscopy, line profiles or maps over larger sample areas can be performed. [Pg.535]

Raman spectroscopy has been successfully applied to the investigation of oxidic catalysts. According to Wachs, the number of Raman publications rose to about 80-100 per year at the end of the nineties, with typically two thirds of the papers devoted to oxides [41]. Raman spectroscopy provides insight into the structure of oxides, their crystallinity, the coordination of metal oxide sites, and even the spatial distribution of phases through a sample when the technique is used in microprobe mode. As the frequencies of metal-oxygen vibrations found in a lattice are typically between a few hundred and 1000 cm 1 and are thus difficult to investigate in infrared, Raman spectroscopy is clearly the indicated technique for this purpose. [Pg.235]

It is important to appreciate that Raman shifts are, in theory, independent of the wavelength of the incident beam, and only depend on the nature of the sample, although other factors (such as the absorbance of the sample) might make some frequencies more useful than others in certain circumstances. For many materials, the Raman and infrared spectra can often contain the same information, but there are a significant number of cases, in which infrared inactive vibrational modes are important, where the Raman spectrum contains complementary information. One big advantage of Raman spectroscopy is that water is not Raman active, and is, therefore, transparent in Raman spectra (unlike in infrared spectroscopy, where water absorption often dominates the spectrum). This means that aqueous samples can be investigated by Raman spectroscopy. [Pg.85]

Raman spectroscopy is one of the most powerful techniques for the characterization of nanocarbons. It is also a convenient technique because it involves almost no sample preparation and leaves the material unharmed. There are four characteristic bands for CNTs The band at 200 cm-1 is called radial breathing mode (RBM). It depends on the curvature and can be used to calculate the diameter of SWCNTs [61]. The relatively broad D-band at 1340 cm-1 is assigned to sp2-related defects and disorder in the graphitic structure of the material. The tangential C-C stretching mode is located at -1560 cm 1 (G-band). The second order mode of the D-band can be observed (G -band,... [Pg.12]

Raman spectroscopy s sensitivity to the local molecular enviromnent means that it can be correlated to other material properties besides concentration, such as polymorph form, particle size, or polymer crystallinity. This is a powerful advantage, but it can complicate the development and interpretation of calibration models. For example, if a model is built to predict composition, it can appear to fail if the sample particle size distribution does not match what was used in the calibration set. Some models that appear to fail in the field may actually reflect a change in some aspect of the sample that was not sufficiently varied or represented in the calibration set. It is important to identify any differences between laboratory and plant conditions and perform a series of experiments to test the impact of those factors on the spectra and thus the field robustness of any models. This applies not only to physical parameters like flow rate, turbulence, particulates, temperature, crystal size and shape, and pressure, but also to the presence and concentration of minor constituents and expected contaminants. The significance of some of these parameters may be related to the volume of material probed, so factors that are significant in a microspectroscopy mode may not be when using a WAl probe or transmission mode. Regardless, the large calibration data sets required to address these variables can be burdensome. [Pg.199]

Though the use of transmission geometry is common for many other spectroscopic techniques, it has not been widely nsed for Raman spectroscopy [39] In this case, illumination and collection optics are on opposite sides of the sample. The actual generation and travel of Raman photons through the sample is convoluted, but it is safe to conclude that the bulk of the sample is probed [40,41]. The large sample volume probed results in reduced subsampling errors. In one example, the use of the transmission mode enabled at least 25% reduction in prediction error compared to a small sampling area probe [42]. The approach is insensitive... [Pg.207]


See other pages where SAMPLING MODES IN RAMAN SPECTROSCOPY is mentioned: [Pg.95]    [Pg.96]    [Pg.98]    [Pg.100]    [Pg.102]    [Pg.104]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.95]    [Pg.96]    [Pg.98]    [Pg.100]    [Pg.102]    [Pg.104]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.414]    [Pg.114]    [Pg.302]    [Pg.95]    [Pg.198]    [Pg.1179]    [Pg.335]    [Pg.243]    [Pg.132]    [Pg.469]    [Pg.469]    [Pg.501]    [Pg.1179]    [Pg.1716]    [Pg.319]    [Pg.46]    [Pg.114]    [Pg.550]    [Pg.551]    [Pg.740]    [Pg.299]    [Pg.118]    [Pg.239]    [Pg.160]    [Pg.265]    [Pg.142]    [Pg.188]   


SEARCH



Raman modes

Sample Raman spectroscopy

Sampling in Raman spectroscopy

© 2024 chempedia.info