Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent-borne rubbers

Specific formulations of BR and PIB adhesives can be found in [5]. These adhesives are supplied in forms quite similar to those of natural rubber solvent-borne and water-borne dispersions, and pressure-sensitive pre-coated films. [Pg.652]

The viscosity of elastomeric adhesives determines their method of application. Typically, solvent-borne rubber compounds require low viscosities for application. Thus, viscosities lower than 0.6 Pas for spray, curtain or dip applications are required, whereas for brush application viscosities lower than 5 Pa s are generally used. Roll- coating technology requires viscosities between 5 and 15 Pa s. [Pg.577]

In recent years, the use of solvent-borne adhesives has been seriously restricted. Solvents are, in general, volatile, flammable and toxic. Further, solvent may react with other airborne contaminants contributing to smog formation and workplace exposure. These arguments have limited the use of solvent-bome adhesives by different national and European regulations. Although solvent recovery systems and afterburners can be effectively attached to ventilation equipment, many factories are switching to the use of water-borne rubber adhesives, hot melts or 100% solids reactive systems, often at the expense of product performance or labour efficiency. [Pg.577]

Typieal composition of a solvent-borne rubber adhesive Elastomer 100 phr... [Pg.579]

Butyl phenolic resin is a typical tackifier for solvent-borne polychloroprene adhesives. For these adhesives, rosin esters and coumarone-indene resins can also be used. For nitrile rubber adhesives, hydrogenated rosins and coumarone-indene resins can be used. For particular applications of both polychloroprene and nitrile rubber adhesives, chlorinated rubber can be added. Styrene-butadiene rubber adhesives use rosins, coumarone-indene, pinene-based resins and other aromatic resins. [Pg.597]

For viscosity or sag control. When the rubber base adhesive is applied on a vertical surface, addition of a filler prevents the adhesive from running down the wall. In solvent-borne formulations, fumed silica can be used as anti-sag filler. In water-borne systems, clays impart yield stress and excellent sag control. [Pg.629]

Resistance to weathering. Zinc oxide and magnesium oxide stabilize poly-chloroprene against dehydrochlorination. Further, zinc oxide helps vulcanize the rubber, and magnesium oxide reacts with /-butyl phenolic resin to produce a resinate which improves heat resistance of solvent-borne polychloroprene adhesives. [Pg.629]

Solvent-borne adhesives. Although the NR polymer is inherently tacky, tack-ifying resins are generally added to improve bonding to polar surfaces. Because the solids content in these adhesives is lower than 35 wt%, they are not suitable for gap filling. The quick-grab (cements) adhesives are particular because they contain about 65 wt% rubber, and set within a few seconds under finger pressure. [Pg.648]

Solvent-borne NR and quick-grab adhesives are commonly used in the manufacturing of leather footwear for temporary bonding and in rubber footwear... [Pg.649]

Chlorinated rubber is also used to promote the adhesion of solvent-borne CR adhesives to metals and plasticized PVC. Addition of a low molecular weight chlorinated rubber (containing about 65 wt% chlorine) improves the shear strength and creep resistance of polychloroprene adhesives [75] but a reduction in open time is also produced. A heat reactivation (process in which the surface of the adhesive film is raised to 90-100°C to destroy the crystallinity of the film and allowing diffusion to produce polymer chain interlocking more rapidly) restores tack to the polychloroprene adhesives. [Pg.664]

Isocyanates can be added to solvent-borne CR adhesive solutions as a two-part adhesive system. This two-part adhesive system is less effective with rubber substrates containing high styrene resin and for butadiene-styrene block (thermoplastic rubber) copolymers. To improve the specific adhesion to those materials, addition of a poly-alpha-methylstyrene resin to solvent-borne CR adhesives is quite effective [76]. An alternative technique is to graft a methacrylate monomer into the polychloroprene [2]. [Pg.664]

Fig. 2. Peel strength of NBR rubber as a function of HD2 grease contamination level on grit-blasted steel using the. solvent-borne Chcmlock 205/23.3 primer/adhesive and the aqueotis Chemlock 805/855. Adapted from Ref. 12. ... Fig. 2. Peel strength of NBR rubber as a function of HD2 grease contamination level on grit-blasted steel using the. solvent-borne Chcmlock 205/23.3 primer/adhesive and the aqueotis Chemlock 805/855. Adapted from Ref. 12. ...
Solutions of different carboxylic acids (fiimaric acid [FA], maleic acid, acrylic acid, succinic acid, and malonic acid) in ethanol have been effectively used as primers to increase the adhesion of synthetic vulcanized SBRs. The increase in the adhesion properties of SBR treated with carboxylic acid is attributed to the elimination of zinc stearate moieties and the deposition of acid on the rubber which migrates into the solvent-borne polyurethane adhesive layer once the adhesive joint is formed. The nature of the carboxylic acid determines the rate of diffusion into the adhesive and the extent of rubber-adhesive interfacial interaction. [Pg.770]

Traditional pressure-sensitive adhesives were solutions of rubber and resin in solvent, and these dominated the market until well after World War II. From that time, as an increasing array of elastomers became available, as the price of solvents soared, and as environmental opposition to the use of solvents increased, water-based and hot-melt types made substantial inroads into the solvent-based market. This trend is likely to continue, although solvent-borne adhesives will probably always retain niches in areas where drying speed or ability to key into specific surfaces will outweigh environmental, handling, or price considerations. [Pg.826]

In solvent-borne rubber adhesives, a variety of solvents can be chosen to control drying rate, adjust viscosity and dissolve important ingredients. Resins can be added to improve tack, wetting properties, heat resistance, bond strength and oxidation resistance. The most common resins nsed in rubber-based adhesives are rosins, rosin esters, and terpene, coumarone-indene, hydrocarbon and phenobc resins. Plasticizers and softeners reduce hardness, enhance tack and decrease cost of rubber adhesive formulations. Paraffinic oils, phthalate esters and polybutenes are typical plasticizers. Fillers are not often added to rubber adhesive formulations because they reduce adhesion. However they are sometimes used because they decrease cost and increase solution viscosity. Carbon black and titanium dioxide are also used to provide colour to the adhesives. Clays, calcium carbonate and silicates are also common fillers in rubber adhesive formulations. For water-borne adhesives, typically protective colloid, preservative, defoamers, wetting agents and emulsifiers are included in the formulations. [Pg.432]

Table 2. Typical composition of a solvent-borne rubber adhesive. (Parts by weight per hundred parts of polymer - phr)... Table 2. Typical composition of a solvent-borne rubber adhesive. (Parts by weight per hundred parts of polymer - phr)...

See other pages where Solvent-borne rubbers is mentioned: [Pg.576]    [Pg.578]    [Pg.578]    [Pg.635]    [Pg.787]    [Pg.949]    [Pg.286]    [Pg.471]    [Pg.74]    [Pg.424]    [Pg.5043]    [Pg.576]    [Pg.578]    [Pg.578]    [Pg.635]    [Pg.787]    [Pg.949]    [Pg.431]    [Pg.435]    [Pg.435]   


SEARCH



© 2024 chempedia.info