Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber elasticity, statistical

Kaliske, M., Heinrich, G., 1999. An extended tube-model for rubber elasticity Statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72 (4), 602-632. Khokhlov, A.R., 1992. In Dusek, K. (Ed.), Responsive Gels Volume Transitions I. Springer, Verlag Berlin, p. 125. [Pg.191]

Kaliske, M. and Heinrich, G. (1999) An extended tube-model for rubber elasticity statistical-mechanical theory and finite element implementation. Rubber Chem. [Pg.84]

The bracket (1 — 2/f) was introduced into the theory of rubber elasticity by Graessley [23], following an idea of Duiser and Staverman [28]. Graessley discussed the statistical mechanics of random coil networks, which he had divided into an ensemble of micronetworks. [Pg.322]

The formal thermodynamic analogy existing between an ideal rubber and an ideal gas carries over to the statistical derivation of the force of retraction of stretched rubber, which we undertake in this section. This derivation parallels so closely the statistical-thermodynamic deduction of the pressure of a perfect gas that it seems worth while to set forth the latter briefly here for the purpose of illustrating clearly the subsequent derivation of the basic relations of rubber elasticity theory. [Pg.464]

The molecular models of rubber elasticity relate chain statistics and chain deformation to the deformation of the macroscopic material. The thermodynamic changes, including stress are derived from chain deformation. In this sense, the measurement of geometric changes is fundamental to the theory, constitutes a direct check of the model, and is an unambiguous measure of the mutual consistency of theory and experiment. [Pg.258]

The concept of affine deformation is central to the theory of rubber elasticity. The foundations of the statistical theory of rubber elasticity were laid down by Kuhn (JJ, by Guth and James (2) and by Flory and Rehner (3), who introduced the notion of affine deformation namely, that the values of the cartesian components of the end-to-end chain vectors in a network vary according to the same strain tensor which characterizes the macroscopic bulk deformation. To account for apparent deviations from affine deformation, refinements have been proposed by Flory (4) and by Ronca and Allegra (5) which take into account effects such as chain-junction entanglements. [Pg.279]

Simultaneous IPN. According to the statistical theory of rubber elasticity, the elasticity modulus (Eg), a measure of the material rigidity, is proportional to the concentration of elastically active segments (Vg) in the network [3,4]. For negligible perturbation of the strand length at rest due to crosslinking (a reasonable assumption for the case of a simultaneous IPN), the modulus is given by ... [Pg.62]

Freed,K. F. Statistical mechanics of systems with internal constraints rubber elasticity. [Pg.174]

In the current statistical theory of rubber elasticity, it is suggested that the front-factor molecular forces. They have proposed a semiempirical equation of state taking into account the dependence... [Pg.45]

In other statistical theories of rubber elasticity (see e.g. reviews 29,34)) the Gaussian statistics is not valid even at small deformations and the intramolecular energy component is dependent on deformation. [Pg.47]

It is well known that the equation of state of Eq. (28) based on the Gaussian statistics is only partially successful in representing experimental relationships tension-extension and fails to fit the experiments over a wide range of strain modes 29-33 34). The deviations from the Gaussian network behaviour may have various sources discussed by Dusek and Prins34). Therefore, phenomenological equations of state are often used. The most often used phenomenological equation of state for rubber elasticity is the Mooney-Rivlin equation 29 ,3-34>... [Pg.48]

The statistical theory of rubber elasticity predicts that isothermal simple elongation and compression at constant pressure must be accompanied by interchain effects resulting from the volume change on deformation. The correct experimental determination of these effects is difficult because of very small absolute values of the volume changes. These studies are, however, important for understanding the molecular mechanisms of rubber elasticity and checking the validity of the postulates of statistical theory. [Pg.61]

Rusakov 107 108) recently proposed a simple model of a nematic network in which the chains between crosslinks are approximated by persistent threads. Orientional intermolecular interactions are taken into account using the mean field approximation and the deformation behaviour of the network is described in terms of the Gaussian statistical theory of rubber elasticity. Making use of the methods of statistical physics, the stress-strain equations of the network with its macroscopic orientation are obtained. The theory predicts a number of effects which should accompany deformation of nematic networks such as the temperature-induced orientational phase transitions. The transition is affected by the intermolecular interaction, the rigidity of macromolecules and the degree of crosslinking of the network. The transition into the liquid crystalline state is accompanied by appearence of internal stresses at constant strain or spontaneous elongation at constant force. [Pg.68]

Dobson, G. R-, andM. Gordon Theory of branching processes and statistics of rubber elasticity. J. Chem. Phys. 43, 705 (1965) Rubber Chem. Technol. 39, 1472 (1966). [Pg.96]

The mechanical properties of single hydrated dextran microcapsules (< 10 pm in diameter) with an embedded model protein drug have also been measured by the micromanipulation technique, and the information obtained (such as the Young s modulus) was used to derive their average pore size based on a statistical rubber elasticity theory (Ward and Hadley, 1993) and furthermore to predict the protein release rate (Stenekes et al., 2000). [Pg.67]

According to the statistical-mechanical theory of rubber elasticity, it is possible to obtain the temperature coefficient of the unperturbed dimensions, d InsjdT, from measurements of elastic moduli as a function of temperature for lightly cross-linked amorphous networks [Volken-stein and Ptitsyn (258 ) Flory, Hoeve and Ciferri (103a)]. This possibility, which rests on the reasonable assumption that the chains in undiluted amorphous polymer have essentially their unperturbed mean dimensions [see Flory (5)j, has been realized experimentally for polyethylene, polyisobutylene, natural rubber and poly(dimethylsiloxane) [Ciferri, Hoeve and Flory (66") and Ciferri (66 )] and the results have been confirmed by observations of intrinsic viscosities in athermal (but not theta ) solvents for polyethylene and poly(dimethylsiloxane). In all these cases, the derivative d In sjdT is no greater than about 10-3 per degree, and is actually positive for natural rubber and for the siloxane polymer. [Pg.200]


See other pages where Rubber elasticity, statistical is mentioned: [Pg.410]    [Pg.478]    [Pg.602]    [Pg.123]    [Pg.339]    [Pg.358]    [Pg.257]    [Pg.453]    [Pg.140]    [Pg.24]    [Pg.238]    [Pg.409]    [Pg.178]    [Pg.41]    [Pg.50]    [Pg.80]    [Pg.29]    [Pg.99]    [Pg.102]    [Pg.139]    [Pg.172]    [Pg.214]    [Pg.235]    [Pg.235]    [Pg.68]    [Pg.196]    [Pg.693]    [Pg.429]    [Pg.94]   


SEARCH



Elasticity statistics

Rubber elastic

Rubbers statistics

© 2024 chempedia.info