Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotational Subject

Molecular moments of inertia are about 10 g/cm thus 7 values for benzene, N2, and NH3 are 18, 1.4, and 0.28, respectively, in those units. For the case of benzene gas, a = 6 and n = 3, and 5rot is about 21 cal K mol at 25°C. On adsorption, all of this entropy would be lost if the benzene were unable to rotate, and part of it if, say, rotation about only one axis were possible (as might be the situation if the benzene was subject only to the constraint of lying flat... [Pg.583]

Finally, we consider the complete molecular Hamiltonian which contains not only temis depending on the electron spin, but also temis depending on the nuclear spin / (see chapter 7 of [1]). This Hamiltonian conmiutes with the components of Pgiven in (equation Al.4,1). The diagonalization of the matrix representation of the complete molecular Hamiltonian proceeds as described in section Al.4,1.1. The theory of rotational synnnetry is an extensive subject and we have only scratched the surface here. A relatively new book, which is concemed with molecules, is by Zare [6] (see [7] for the solutions to all the problems in [6] and a list of the errors). This book describes, for example, the method for obtaining the fimctioiis ... [Pg.170]

Spectral lines are fiirther broadened by collisions. To a first approximation, collisions can be drought of as just reducing the lifetime of the excited state. For example, collisions of molecules will connnonly change the rotational state. That will reduce the lifetime of a given state. Even if die state is not changed, the collision will cause a phase shift in the light wave being absorbed or emitted and that will have a similar effect. The line shapes of collisionally broadened lines are similar to the natural line shape of equation (B1.1.20) with a lifetime related to the mean time between collisions. The details will depend on the nature of the intemrolecular forces. We will not pursue the subject fiirther here. [Pg.1144]

Finally, let us consider molecules with identical nuclei that are subject to C (n > 2) rotations. For C2v molecules in which the C2 rotation exchanges two nuclei of half-integer spin, the nuclear statistical weights of the symmetric and antisymmetric rotational levels will be one and three, respectively. For molecules where C2 exchanges two spinless nuclei, one-half of the rotational levels (odd or even J values, depending on the vibrational and electronic states)... [Pg.578]

This completes our introduction to the subject of rotational and vibrational motions of molecules (which applies equally well to ions and radicals). The information contained in this Section is used again in Section 5 where photon-induced transitions between pairs of molecular electronic, vibrational, and rotational eigenstates are examined. More advanced treatments of the subject matter of this Section can be found in the text by Wilson, Decius, and Cross, as well as in Zare s text on angular momentum. [Pg.360]

This kind of perfect flexibility means that C3 may lie anywhere on the surface of the sphere. According to the model, it is not even excluded from Cj. This model of a perfectly flexible chain is not a realistic representation of an actual polymer molecule. The latter is subject to fixed bond angles and experiences some degree of hindrance to rotation around bonds. We shall consider the effect of these constraints, as well as the effect of solvent-polymer interactions, after we explore the properties of the perfectly flexible chain. Even in this revised model, we shall not correct for the volume excluded by the polymer chain itself. [Pg.49]

The rotation of one carbon-carbon bond around another—say, the (i + l)th around the ith in Fig. 1.5a—is subject to steric hindrance, so that not all values of

[Pg.55]

The conformational characteristics of PVF are the subject of several studies (53,65). The rotational isomeric state (RIS) model has been used to calculate mean square end-to-end distance, dipole moments, and conformational entropies. C-nmr chemical shifts are in agreement with these predictions (66). The stiffness parameter (5) has been calculated (67) using the relationship between chain stiffness and cross-sectional area (68). In comparison to polyethylene, PVF has greater chain stiffness which decreases melting entropy, ie, (AS ) = 8.58 J/(molK) [2.05 cal/(molK)] versus... [Pg.380]

Machine components ate commonly subjected to loads, and hence stresses, which vary over time. The response of materials to such loading is usually examined by a fatigue test. The cylinder, loaded elastically to a level below that for plastic deformation, is rotated. Thus the axial stress at all locations on the surface alternates between a maximum tensile value and a maximum compressive value. The cylinder is rotated until fracture occurs, or until a large number of cycles is attained, eg, lO. The test is then repeated at a different maximum stress level. The results ate presented as a plot of maximum stress, C, versus number of cycles to fracture. For many steels, there is a maximum stress level below which fracture does not occur called the... [Pg.210]

The force and moment ia a constrained system can be estimated by the cantilever formula. Leg MB is a cantilever subject to a displacement of and leg CB subject to a displacement Av. Taking leg CB, for example, the task has become the problem of a cantilever beam with length E and displacement of Av. This problem caimot be readily solved, because the end condition at is an unknown quantity. However, it can be conservatively solved by assuming there is no rotation at poiat B. This is equivalent to putting a guide at poiat B, and results ia higher estimate ia force, moment, and stress. The approach is called guided-cantilever method. [Pg.61]


See other pages where Rotational Subject is mentioned: [Pg.2539]    [Pg.119]    [Pg.530]    [Pg.2294]    [Pg.2543]    [Pg.713]    [Pg.23]    [Pg.1231]    [Pg.2539]    [Pg.119]    [Pg.530]    [Pg.2294]    [Pg.2543]    [Pg.713]    [Pg.23]    [Pg.1231]    [Pg.486]    [Pg.4]    [Pg.144]    [Pg.226]    [Pg.830]    [Pg.1140]    [Pg.1214]    [Pg.2449]    [Pg.3]    [Pg.567]    [Pg.639]    [Pg.352]    [Pg.354]    [Pg.475]    [Pg.521]    [Pg.93]    [Pg.135]    [Pg.373]    [Pg.61]    [Pg.108]    [Pg.164]    [Pg.330]    [Pg.233]    [Pg.236]    [Pg.411]    [Pg.36]    [Pg.137]    [Pg.302]    [Pg.157]    [Pg.207]    [Pg.512]    [Pg.60]    [Pg.65]   
See also in sourсe #XX -- [ Pg.783 ]




SEARCH



Optical rotation Subject

Rotatable carrier Subject

Rotational modes Subject

SUBJECTS restricted rotation

Subject rotating disc electrodes

© 2024 chempedia.info