Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotation group irreducible representations

We have described here one particular type of molecular synnnetry, rotational symmetry. On one hand, this example is complicated because the appropriate symmetry group, K (spatial), has infinitely many elements. On the other hand, it is simple because each irreducible representation of K (spatial) corresponds to a particular value of the quantum number F which is associated with a physically observable quantity, the angular momentum. Below we describe other types of molecular synnnetry, some of which give rise to finite synnnetry groups. [Pg.140]

The rotation-vibration-electronic energy levels of the PH3 molecule (neglecting nuclear spin) can be labelled with the irreducible representation labels of the group The character table of this group is given in table Al.4.10. [Pg.177]

R = (i/ r) require translations t in addition to rotations j/. The irreducible representations for all Abelian groups have a phase factor c, consistent with the requirement that all h symmetry elements of the symmetry group commute. These symmetry elements of the Abelian group are obtained by multiplication of the symmetry element./ = (i/ lr) by itself an appropriate number of times, since R = E, where E is the identity element, and h is the number of elements in the Abelian group. We note that N, the number of hexagons in the ID unit cell of the nanotube, is not always equal h, particularly when d 1 and dfi d. [Pg.30]

The group (E, J) has only two one-dimensional irreducible representations. The representations of 0/(3) can therefore be obtained from those of 0(3) as direct products. The group 0/(3) is called the three-dimensional rotation-inversion group. It is isomorphic with the crystallographic space group Pi. [Pg.90]

Each set of four numbers ( 1) constitutes an irreducible representation (i.r.) of the symmetry group, on the basis of either a coordinate axis or an axial rotation. According to a well-known theorem of group theory [2.7.4(v)], the number of i.r. s is equal to the number of classes of that group. The four different i.r. s obtained above therefore cover all possibilities for C2V. The theorem thus implies that any representation of the symmetry operators of the group, on whatever basis, can be reduced to one of these four. In summary, the i.r. s of C2 are given by Table 1. [Pg.295]

In Table 7.5, we show the character (defined as the set of character elements of a representation) of different representations (from / = 1 to 6) of the 0 group. The character elements were obtained from Equation (7.7). These representations, which were irreducible in the full rotation group, are in general reducible in 0, as can be seen by inspecting the character table of 0 (in Table 7.4). Thus, the next step is to decompose them into irreducible representations of 0, as we did in Example 7.1. Table 7.5 also includes this reduction in other words, the irreducible representations of group O into which each representation is decomposed. We will use this table when treating relevant examples in Section 7.6. [Pg.251]

In the ideal case of free Eu + ions, we first must observe that the components of the electric dipole moment, e x, y, z), belong to the irreducible representation in the full rotation group. This can be seen, for instance, from the character table of group 0 (Table 7.4), where the dipole moment operator transforms as the T representation, which corresponds to in the full rotation group (Table 7.5). Since Z)° x Z) = Z) only the Dq -> Fi transition would be allowed at electric dipole order. This is, of course, the well known selection rule A.I = 0, 1 (except for / = 0 / = 0) from quantum mechanics. Thus, the emission spectrum of free Eu + ions would consist of a single Dq Ei transition, as indicated by an arrow in Figure 7.7 and sketched in Figure 7.8. [Pg.255]

Under the action of the electric field of the 0 environment, the state of the ( ) 3d configuration will split up into two states. The orbital degeneracy of a D state is 2 X 2 -f- 1 = 5. From the above discussion each of the resulting states must belong to one of the irreducible representations of Oh given in Table I. The state W corresponds to an irreducible representation of the group of symmetry operations of a sphere, i.e., the full rotation group R(3). [Pg.86]

Hyperspherical harmonics are now explicitly considered as expansion basis sets for atomic and molecular orbitals. In this treatment the key role is played by a generalization of the famous Fock projection [5] for hydrogen atom in momentum space, leading to the connection between hydrogenic orbitals and four-dimensional harmonics, as we have seen in the previous section. It is well known that the hyperspherical harmonics are a basis for the irreducible representations of the rotational group on the four-dimensional hypersphere from this viewpoint hydrogenoid orbitals can be looked at as representations of the four-dimensional hyperspherical symmetry [14]. [Pg.298]

The inclusion of the crystal field destroys the rotational symmetry of the ion and lifts the degeneracy of J levels (except of course Kramer s degeneracy) the only good quantum numbers will be T s, the irreducible representations of the point-group symmetry operation. If the crystal field interaction is comparable to J-J splitting (and we see from Table 2 that this is the case of actinides) it will also cause an admixture of different J multiplets. [Pg.133]

Combining this last result with our knowledge of the classification of the irreducible representations of the group 50(3), we can show that the representation of the rotation group on homogeneous harmonic polynomials of any fixed degree is irreducible. [Pg.212]

One-dimensional irreducible representations are labeled either A or B according to whether the character of a 2irjn (proper or improper) rotation about the symmetry axis of highest order n is +1 or —1, respectively. For the point groups Wl9 and which have no symmetry axis, all one-dimensional representations are labeled A. For... [Pg.131]

The simplest molecules are atoms, which belong to point group %h (often called the full rotation-reflection group). The character table (which we omit) contains irreducible representations of dimensions 1,3,5,... these representations correspond to energy levels with electronic orbital angular-momentum quantum number /=0,1,2,... we have the (2/+1)-fold degeneracy associated with different values of the quantum number... [Pg.463]

We have seen that the molecular electronic and vibrational wave functions el and vib each transform according to the irreducible representations of the molecular point group. We now consider the rotational wave function ptot. [Pg.474]

Note first that y(E) = 6 while all other characters are zero. The reason is that the operation E transforms each into itself while every rotation operation necessarily shifts every 0, to a different place. Clearly this kind of result will be obtained for any /z-membered ring in a pure rotation group C . Second, note that the only way to add up characters of irreducible representations so as to obtain y = 6 for E and y - 0 for every operation other than E is to sum each column of the character table. From the basic properties of the irreducible representations of the uniaxial pure rotation groups (see Section 4.5), this is a general property for all C groups. Thus, the results just obtained for the benzene molecule merely illustrate the following general rule ... [Pg.144]

In a cyclic (CH)n molecule with rotational symmetry Cn, there will always be n n molecular orbitals, one belonging to each irreducible representation of the group Cn. [Pg.144]


See other pages where Rotation group irreducible representations is mentioned: [Pg.172]    [Pg.484]    [Pg.561]    [Pg.158]    [Pg.114]    [Pg.41]    [Pg.41]    [Pg.41]    [Pg.41]    [Pg.405]    [Pg.495]    [Pg.725]    [Pg.11]    [Pg.206]    [Pg.55]    [Pg.11]    [Pg.585]    [Pg.592]    [Pg.669]    [Pg.249]    [Pg.249]    [Pg.86]    [Pg.307]    [Pg.305]    [Pg.393]    [Pg.137]    [Pg.16]    [Pg.17]    [Pg.335]    [Pg.209]    [Pg.225]    [Pg.462]    [Pg.127]    [Pg.300]   
See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Group irreducible

Group representation

Irreducible

Irreducible representations

Rotation group

Rotational groups

© 2024 chempedia.info