Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotating frame nuclear Overhauser enhancement spectroscopy

Refocused J cross-polarization Rotating frame nuclear Overhauser enhancement Rotating frame nuclear Overhauser enhancement spectroscopy... [Pg.241]

ROESY, rotating frame nuclear Overhauser enhanced spectroscopy. [Pg.333]

The elucidation of the scalar coupling network by the correlation experiments is, apart from small molecules, not sufficient for the unambiguous, sequential and stereo-specific assignment. The complementary information of spatially adjacent protons is obtained via cross-relaxation experiments, the laboratory-frame nuclear Overhauser enhancement spectroscopy (NOESY) and the rotating-frame nuclear Overhauser effect spectroscopy (ROESY). These experiments provide also the distance restraints for the structure determination and help to recognize exchange processes. [Pg.708]

NMR experiments include COSY, TOCSY, Cheteronuclear NMR experiments, NOESY (nuclear overhauser enhancement spectroscopy) and ROESY (rotating frame overhauser effect spectroscopy) as well as other two- and three-dimensional methodologies (Fossen and Andersen, 2006). [Pg.228]

NMR has become a standard tool for structure determination and, in particular, for these of Strychnos alkaloids. The last general article in this field was authored by J. Sapi and G. Massiot in 1994 [65] and described the advances in spectroscopic methods applied to these molecules. More recently, strychnine (1) has even been used to illustrate newly introduced experiments [66]. We comment, here, on their advantages and sum up the principles of usual 2D experiments in Fig. (1) and Fig. (2) (COSY Correlation SpectroscopY, TOCSY TOtal Correlation SpectroscopY, NOESY Nuclear Overhauser Enhancement SpectroscopY, ROESY Rotating frame Overhauser Enhancement SpectroscopY, HMQC Heteronuclear Multiple Quantum Coherrence, HMBC Heteronuclear Multiple Bond Correlation). This section updates two areas of research in the field new H and 13C NMR experiments with gradient selection or/and selective pulses, 15N NMR, and microspectroscopy. To take these data into account, another section comments on the structure elucidation of new compounds isolated from Strychnos. It covers the literature from 1994 to early 2000. [Pg.1040]

We described the basic aspects of NOESY in Section 10.1 as an introductory example of a 2D experiment. NOESY is very widely used in measuring macro-molecular conformation, as we see in Chapter 13. However, as shown in Fig. 8.4, the H— H nuclear Overhauser enhancement 17 varies from its value of +0.5 in small molecules to a limiting value of — 1 in large polymers with very long Tc, and at intermediate values of rc the NOE may vanish. An alternative is to use the NOE measured in the rotating frame, as this quantity is always positive. By analogy to NOESY, this technique has the acronym ROESY (rotating frame Overhauser enhancement spectroscopy),... [Pg.267]

As a matter of fact, the vast majority of experimental studies focuses on a relatively well-defined set of parameters. Taking as an example the important case of NMR spectroscopy of organic molecules, the characterization is usually based on measurements of proton and carbon chemical shifts in solution, homonuclear (and possibly heteronuclear) coupling constants, and proton-proton nuclear Overhauser enhancements [or the corresponding rotating-frame effects (ROEs)]. This set of data is certainly reductive if compared with the information content potentially accessible by NMR measurements however, it does represent a reasonable balance of such factors as operator and instrument time, apparatus availabihty, costs, amounts of material required, completeness of information, and ease of interpretation. [Pg.208]

The conformation of the mixed p agonist/5 antagonist H-Tyr-c[-D-Orn-2-Nal-D-Pro-Gly-] in comparison to that of H-Tyr-c[-D-Orn-Phe-D-Pro-Gly-] was studied in DMSO-d6 by NMR spectroscopy and by molecular mechanics calculations [62,64]. Neither peptide showed nuclear Overhauser effects between C H protons or chemical exchange cross peaks in spectra obtained by total correlation and rotating frame Overhauser enhance-... [Pg.169]

A 2002 review by Reynolds and Enriquez describes the most effective pulse sequences for natural product structure elucidation.86 For natural product chemists, the review recommends HSQC over HMQC, T-ROESY (transverse rotating-frame Overhauser enhancement) in place of NOESY (nuclear Over-hauser enhancement spectroscopy) and CIGAR (constant time inverse-detected gradient accordion rescaled) or constant time HMBC over HMBC. HSQC spectra provide better line shapes than HMQC spectra, but are more demanding on spectrometer hardware. The T-ROESY or transverse ROESY provides better signal to noise for most small molecules compared with a NOESY and limits scalar coupling artefacts. In small-molecule NMR at natural abundance, the 2D HMBC or variants experiment stands out as one of the key NMR experiments for structure elucidation. HMBC spectra provide correlations over multiple bonds and, while this is desirable, it poses the problem of distinguishing between two- and three-bond correlations. [Pg.287]


See other pages where Rotating frame nuclear Overhauser enhancement spectroscopy is mentioned: [Pg.175]    [Pg.93]    [Pg.175]    [Pg.93]    [Pg.414]    [Pg.45]    [Pg.340]    [Pg.162]    [Pg.138]    [Pg.2]    [Pg.930]    [Pg.210]    [Pg.903]    [Pg.14]    [Pg.348]    [Pg.11]    [Pg.18]   


SEARCH



Frame spectroscopy)

Frame, rotating

Nuclear Overhauser

Nuclear Overhauser enhancement

Nuclear rotation

Overhauser

Overhauser enhancement

Overhauser spectroscopy

Rotating frame SpectroscopY

Rotating frame nuclear Overhauser

Rotating-frame Overhauser enhancement

Rotating-frame Overhauser spectroscopy

Rotation spectroscopy

Rotational spectroscopies

© 2024 chempedia.info